ROSA PARKS MIDDLE SCHOOL GENERATOR AND ELECTRICAL EQUIPMENT UPGRADE

SPECIFICATIONS

MECHANICAL/ELECTRICAL ENGINEERING

Alban Engineering, Inc. 303 International Circle, #450 Hunt Valley, Maryland 21030

Tel: 410-842-6411

June 2023

AEI 22080

DIVISION 22 - PLUMBING

220500	COMMON WORK RESULTS FOR PLUMBING
226323	FACILITY NATURAL GAS PIPING

DIVISION 26 - ELECTRICAL

260000	GENERAL ELECTRICAL REQUIREMENTS
260500	COMMON WORK RESULTS FOR ELECTRICAL
260505	ELECTRICAL DEMOLITION FOR REMODELING
260519	LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
260526	GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
260529	HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
260533	RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS
260544	SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING
260553	IDENTIFICATION FOR ELECTRICAL SYSTEMS
262200	LOW-VOLTAGE TRANSFORMERS
262416	PANELBOARDS
262726	WIRING DEVICES
262813	FUSES
262816	ENCLOSED SWITCHES AND CIRCUIT BREAKERS
262913	ENCLOSED CONTROLLERS
263213.16	GASEOUS EMERGENCY ENGINE GENERATORS
263600	TRANSFER SWITCHES
264313	SURGE PROTECTION DEVICES

SECTION 220500

COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Transition fittings.
 - 3. Dielectric fittings.
 - 4. Mechanical sleeve seals.
 - 5. Sleeves.
 - 6. Escutcheons.
 - 7. Grout.
 - 8. Equipment installation requirements common to equipment sections.
 - 9. Painting and finishing.
 - 10. Concrete bases.
 - 11. Supports and anchorages.
- B. Provide all labor, materials, equipment, and services necessary for and incidental to the complete installation and operation of all mechanical work.
- C. Unless otherwise specified, all submissions shall be made to, and acceptances and approvals made by the Architect and the Engineer.
- D. Contract Drawings are generally diagrammatic and all offsets, fittings, transitions and accessories are not necessarily shown. Furnish and install all such items as may be required to fit the work to the conditions encountered. Arrange piping, equipment, and other work generally as shown on the contract drawings, providing proper clearance and access. Where departures are proposed because of field conditions or other causes, prepare and submit detailed shop drawings for approval in accordance with "Submittals" specified below. The right is reserved to make reasonable changes in location of equipment, piping, and ductwork, up to the time of rough-in or fabrication.
- E. Conform to the requirements of all rules, regulations and codes of local, state and federal authorities having jurisdiction.
- F. Coordinate the work under Division 22 with the work of all other construction trades.
- G. Be responsible for all construction means, methods, techniques, procedures, and phasing sequences used in the work. Furnish all tools, equipment and materials necessary to properly perform the work in first class, substantial, and workmanlike manner, in accordance with the full intent and meaning of the contract documents.

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- F. The following are industry abbreviations for plastic materials:
 - 1. ABS: Acrylonitrile-butadiene-styrene plastic.
 - 2. CPVC: Chlorinated polyvinyl chloride plastic.
 - 3. PE: Polyethylene plastic.
 - 4. PVC: Polyvinyl chloride plastic.
- G. The following are industry abbreviations for rubber materials:
 - 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 - 2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Transition fittings.
 - 2. Dielectric fittings.
 - 3. Mechanical sleeve seals.
 - 4. Escutcheons.
- B. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for plumbing installations. Coordinate the work under Division 22 with work of all other construction trades. Conform to the requirements of all rules, regulations, and Codes of local, state, and Federal Authorities Having Jurisdiction.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for plumbing items requiring access that are concealed behind finished surfaces.

1.8 PERMITS AND FEES

- A. Obtain all permits and pay taxes, fees and other costs in connection with the work. File necessary plans, prepare documents, give proper notices and obtain necessary approvals. Deliver inspection and approval certificates to Owner prior to final acceptance of the work.
- B. Permits and fees shall comply with the General Requirements of the specification.

1.9 EXAMINATION OF SITE:

A. Examine the site, determine all conditions and circumstances under which the work must be done, and make all necessary allowances for same. No additional cost to the Owner will be permitted for Contractor's failure to do so.

1.10 CONTRACTOR QUALIFICATION

- A. Any Contractor or Subcontractor performing work under Division 22 shall be fully qualified and acceptable to the Architect. Submit the following evidence if requested.
 - 1. A list of not less than five comparable projects that the Contractor completed.
 - 2. Letter of reference from not less than three registered professional engineers, Contractors or building owners.
 - 3. Local and/or State License, where required.
 - 4. Membership trade or professional organizations where required.

- B. A Contractor is any individual, partnership, or corporation, performing work by contract or subcontract on this project.
- C. Acceptance of a Contractor or Subcontractor will not relieve the Contractor or subcontractor of any contractual requirements or his responsibility to supervise and coordinate the work, of various trades.

1.11 MATERIALS AND EQUIPMENT

- A. Materials and equipment installed as a permanent part of the project shall be new, unless otherwise indicated or specified, and of the specified type and quality. This Contractor shall be responsible for connecting all utilities as shown on the drawings, to equipment identified as "under another Division".
- B. Where material or equipment is identified by proprietary name, model number and/or manufacturer, furnish named item, or its equal only of other manufacturers who are indicated in this specification, subject to approval by the Engineer and the Owner. Alternate manufacturers or items other than the first-named shall be equal or better in quality and performance and must be suitable for available space, required arrangement, and application. Submit all data necessary to determine suitability of substituted items, for approval.
- C. The suitability of named item only has been verified. Where more than one item is named, only the first named item has been verified as suitable. Alternate manufacturers/items are items other than first named which shall be equal or better in quality and performance to that of specified items, and must be suitable for available space, required arrangement and application. Manufacturers not named are not acceptable and shall not be submitted.
- D. Substitution will not be permitted for specified items of material or equipment where only one manufacturer is identified.
- E. The Contractor shall only submit those manufacturers indicated in the specification. Proposed alternate manufacturers must be approved by the Owner and be included into the specifications by Addenda. Substitutions are for materials or manufacturers not listed in this specification. For each substitution proposed by the Contractor, the Contractor shall clearly indicate all differences from the specified item, change in Contract cost, benefit to the Owner and a brief description why the substitution is being proposed. Refer to the General Conditions for additional information. The Owner shall ultimately accept/reject all substitution requests. Refer to the General Conditions of this specification for additional information.

1.12 FIRE SAFE MATERIALS

A. Unless otherwise indicated, materials and equipment shall conform to UL, NFPA OR ASTM Standards for Fire Safety with Smoke and Fire Hazard Rating not exceeding flame spread of 25 and smoke developed of 50.

1.13 REFERENCED STANDARDS, CODES AND SPECIFICATIONS:

- A. Specifications, Codes and Standards listed below are included as part of this specification, latest edition.
 - AABC Associated Air Balance Council
 - ABMA American Boiler Manufacturers Association

ACCA	-	Air Conditioning Contractors of America
ACGIH	-	American Conference of Governmental Industrial Hygienist
ADC	-	Air Diffusion Council
AIHA	-	American Industrial Hygiene Association
AGA	-	American Gas Association
AMCA	-	Air Movement and Control Association
ANSI	-	American National Standards Institute
ARI	-	Air Conditioning and Refrigeration Institute
ASA	-	Acoustical Society of America
ASHRAE		 American Society of Heating, Refrigerating and Air Conditioning Engineers
ASME	-	American Society of Mechanical Engineers
ASTM	-	American Society for Testing and Materials
AWWA	-	American Water Works Association
CABO	-	Council of American Building Officials
CAGI	-	Compressed Air and Gas Institute
CS	-	Commercial Standard
CSA	-	Canadian Standards Association
CTI	-	Cooling Tower Institute
HEI	-	Heat Exchanger Institute
HI	-	Hydraulic Institute
HYDI	-	Hydronics Institute
IAPMO	-	International Association of Plumbing and Mechanical Officials
IBC	-	International Building Code
IBR	-	Institute of Boiler and Radiator Manufacturers
ICBO	-	International Conference of Building Officials
IEEE	-	Institute of Electrical and Electronics Engineers
IFCI	-	International Fire Code Institute
IMC	-	International Mechanical Code
IPC	-	International Plumbing Code
MSSP	-	Manufacturers Standards Society of the Valve and Fittings Industry
NEC	-	National Electrical Code
NEMA	-	National Electrical Manufacturers Association
NFPA	-	National Fire Protection Association
NSF Int.		 National Sanitation Foundation
SMACNA		 Sheet Metal and Air Conditioning Contractors National Association
TEMA	-	Tubular Exchanger Manufacturers Association
UL	-	Underwriters' Laboratories

B. All mechanical equipment and materials shall comply with the Codes and Standards listed in the latest ASHRAE Handbook.

1.14 SUBMITTALS, REVIEW AND ACCEPTANCE:

- A. Equipment, materials, installation, workmanship and arrangement of work are subject to review and acceptance. No substitution will be permitted after acceptance of equipment or materials except where such substitution is considered by the Engineer to be in best interest of Owner.
- B. With 30 calendar days after award of contract, submit a complete Material and Equipment List for approval. List all proposed materials and equipment, indicating proposed manufacturer, type, class, model and other general identifying information.
- C. After acceptance of Material and Equipment List, submit complete descriptive data for all items. Data shall consist of specifications, data sheets, samples, capacity ratings, performance curves,

operating characteristics, catalog cuts, dimensional drawings, wiring diagrams, installation instructions, and any other information necessary to indicate complete compliance with Contract Documents. Edit submittal data specifically for application to this project.

- D. Thoroughly review and stamp all submittals to indicate compliance with contract requirements prior to submission. Coordinate installation requirements and any electrical requirements for equipment submitted. Contractor shall be responsible for correctness of all submittals. Each piece of equipment and its associated components (e.g., relays, fuses, disconnects, etc.) shall be clearly identified.
- E. Submittals will be reviewed for general compliance with design concept in accordance with contract documents, but dimensions, quantities, or other details will not be verified.
- F. Identify submittals, indicating intended application, location and service of submitted items. Refer to specification sections or paragraphs where applicable. Clearly indicate exact type, model number, style, size and special features of proposed item. Submittals of a general nature will not be acceptable. For items other than first-named, clearly list on the first page of the submittal all differences between the specified item and the proposed item. The Contractor shall be responsible for corrective action (or replacement with the specified item) while maintaining the specification requirements if differences have not been clearly indicated in the submittal.
- G. Submit actual operating conditions or characteristics, including NC Levels, for all equipment where required capacities are indicated. Factory order forms showing only required capacities will not be acceptable.
- H. Acceptance will not constitute waiver of contract requirements unless deviations are specifically indicated and clearly noted.
- I. The Contractor is responsible for notifying the Owner of any changes, substitutions and/or alternative materials/manufacturers that are proposed as equal after the project has bid or submittal has been received.

1.15 SHOP DRAWINGS:

- A. Prepare and submit shop drawings for all specially fabricated items, modifications to standard items, specially designed systems where detailed design is not shown on the contract drawings, or where the proposed installation differs from that shown on contract drawings.
- B. Submit data and shop drawings as listed below, in addition to provisions of Paragraph A above.
 Identify all shop drawings by the name of the item and system and the applicable specification paragraph number.
 Items and Systems Not Limited to:

Access Doors. Backflow Preventer. Capacitors. Fire Stopping - Methods and Materials. Floor & Roof Drains. Flowmeters and Primary Elements. (Flow Fittings) Hot Water Heater Hose Bibbs & Wall Hydrants. Hydro-pneumatic Tanks. Identification System. Mixing Valve, Temperature Limiting Valves. Pipe Guides and Anchors. Pipes and Fittings. Plumbing Fixtures & Trim. Pressure Regulating Valve. Pressure Reducing Valve. Pressure Relief Valve. Sleeves and Sealants. Strainers. Thermal Insulation Materials. Thermometers and Gauges. Trap Seals. Valves - Globe, Angle, Check, Plug, Butterfly, Ball. Vibration Isolation. Water Treatment System.

C. The Contractor, additionally, shall submit for approval any other shop drawings as required by the Architect. No item listed above shall be delivered to the site, or installed, until approved. After the proposed materials have been approved, no substitution will be permitted except where approved by the Architect.

1.16 SUPERVISION AND COORDINATION:

- A. Provide complete supervision, direction, scheduling, and coordination of all work under the Contract, including that of subcontractors.
- B. Coordinate rough-in of all work and installation of sleeves, anchors, and supports for piping, and other work performed under Division 22.
- C. Coordinate electrical work required under Division 22 with that under Division 26. Coordinate all work under Division 22 with work under all other Divisions.

1.17 CUTTING AND PATCHING:

- A. Accomplish all cutting and patching necessary for the installation of work under Division 22. Damage resulting from this work to other work already in place, shall be repaired at Contractor's expense. Where cutting is required, saw-cut or core drill only, and perform work in neat and workmanlike manner. Use mechanics skilled in the particular trades required.
- B. Do not cut structural members without approval.

1.18 PENETRATION OF WATERPROOF CONSTRUCTION:

- A. Coordinate the work to minimize penetration of waterproof construction, including roofs, exterior walls, and interior waterproof construction. Where such penetrations are necessary, furnish and install all necessary curbs, sleeves, flashings, fittings and caulking to make penetrations absolutely watertight.
- B. Where plumbing vents or other pipes penetrate roofs, flash pipe with All American, Inc., or approved equal, roof flashing assemblies, with 4-pound lead, 6-inch skirt, lead cap, and caulked counterflashing sleeve.

- C. Furnish pipe curbs and portals where required. Pitch pockets are prohibited.
- D. Furnish and install roof drains, curbs, vent assemblies, and duct sleeves specifically designed for application to the particular roof construction, and install in accordance with the manufacturer's instructions, The National Roofing Contractors Association, SMACNA and as required by other divisions of this specification. The Contractor shall be responsible for sleeve sizes and locations.

1.19 VIBRATION ISOLATION

A. Furnish and install vibration isolators, flexible connections, supports, anchors, and/or foundations required to prevent transmission of vibration from equipment or piping to building structure.

1.20 ACCESSIBILITY

A. All equipment shall be installed in such a way that all components requiring access are so located and installed that they may be serviced, reset, replaced, recalibrated, etc., by service technicians in accordance with the Manufacturer's recommendations. If any equipment or components are located in such a position that this Contractor cannot comply with the above, the Contractor shall notify the Engineer in writing before equipment is installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

- A. Refer to individual Division 22 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

- 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- 2. AWWA C110, rubber, flat face, 1/8 inch (3.2 mm) thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- C. Flange Bolts and Nuts: ASME B18.2.1, galvanized steel, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.
- F. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- G. Solvent Cements for Joining Plastic Piping:
 - 1. ABS Piping: ASTM D 2235.
 - 2. CPVC Piping: ASTM F 493.
 - 3. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 - 4. PVC to ABS Piping Transition: ASTM D 3138.

2.4 TRANSITION FITTINGS

- A. AWWA Transition Couplings: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.
 - 1. Manufacturers:
 - a. Cascade Waterworks Mfg. Co.
 - b. Dresser Industries, Inc.; DMD Div.
 - c. Ford Meter Box Company, Incorporated (The); Pipe Products Div.
 - d. JCM Industries.
 - e. Smith-Blair, Inc.
 - f. Viking Johnson.
 - 2. Underground Piping NPS 1-1/2 (DN 40) and Smaller: Manufactured fitting or coupling.
 - 3. Underground Piping NPS 2 (DN 50) and Larger: AWWA C219, metal sleeve-type coupling.
 - 4. Aboveground Pressure Piping: Pipe fitting.
- B. Plastic-to-Metal Transition Fittings: PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 - 1. Manufacturers:
 - a. Eslon Thermoplastics.
 - b. Charlotte Pipe.

- C. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 - 1. Manufacturers:
 - a. Thompson Plastics, Inc.
 - b. Charlotte Pipe.
- D. Plastic-to-Metal Transition Unions: MSS SP-107, PVC four-part union. Include brass end, solvent-cement-joint end, rubber O-ring, and union nut.
 - 1. Manufacturers:
 - a. NIBCO INC.
 - b. NIBCO, Inc.; Chemtrol Div.
 - c. Charlotte Pipe.
- E. Flexible Transition Couplings for Underground Nonpressure Drainage Piping: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.
 - 1. Manufacturers:
 - a. Cascade Waterworks Mfg. Co.
 - b. Fernco, Inc.
 - c. Mission Rubber Company.
 - d. Plastic Oddities, Inc.

2.5 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solderjoint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig (1035or 2070-kPa) minimum working pressure as required to suit system pressures.
 - 1. Manufacturers:
 - a. Epco Sales, Inc.
 - b. Watts Industries, Inc.; Water Products Div.
 - c. Flowset.
- D. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).
 - 1. Manufacturers:
 - a. Perfection Corp.
 - b. Precision Plumbing Products, Inc.
 - c. Sioux Chief Manufacturing Co., Inc.
 - d. Victaulic Co. of America.

E. Dielectric Unions and Couplings are prohibited.

2.6 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 - 1. Manufacturers:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Metraflex Co.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 3. Pressure Plates: Stainless Steel. Include two for each sealing element.
 - 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 SLEEVES

- A. Galvanized Steel Pipe: ASTM A53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- B. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.
- C. Galvanized-Steel Sheet: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.
- D. All underground wall sleeves must be galvanized schedule 40 piping.

2.8 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Cast-Brass Type: With set screw.
 - 1. Finish: Polished chrome-plated.
- C. One-Piece, Floor-Plate Type: Cast-iron floor plate.

2.9 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.

- 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
- 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
- 3. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Install cleanouts in aboveground piping and building drain piping (condensate, storm water, sanitary etc) according to the International Plumbing Code, and where indicated.
 - 1. Use cleanouts the same size as drainage piping up to NPS 4 (DN 100). Use NPS 4 (DN 100) for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate cleanouts at each change in direction of piping greater than 45 degrees.
 - 3. Locate cleanouts at minimum intervals of 50 feet (15 m) for piping NPS 4 (DN 100) and smaller and 100 feet (30 m) for larger piping.
 - 4. Locate cleanouts at base of each vertical soil and waste stack.
- L. Select system components with pressure rating equal to or greater than system operating pressure.
- M. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 - 1. New Piping:

- a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
- b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
- c. Insulated Piping: One-piece, stamped-steel type with spring clips.
- d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, castbrass type with polished chrome-plated finish.
- e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
- N. Permanent sleeves are not required for holes formed by removable PE sleeves.
- O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
- P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 - 3. Install sleeves that are two pipe sizes larger than pipe or pipe insulation.
 - a. Galvanized Steel Pipe Sleeves: For pipes through walls and floors except where noted through membrane waterproofing.
 - b. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches (50 mm) above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing. Seal space outside of sleeve fittings with grout.
 - c. Provide galvanized steel sheet sleeves for interior stud partitions.
 - d. Provide galvanized steel wall sleeves with sleeve seal system for walls below grade and concrete slabs on grade. Select sleeve size to allow one-inch annular clear space between piping and sleeve for installing sleeve seal system. Select type, size and number of sealing elements required for piping material and size for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve system components and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a water-tight seal.
 - 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.
- Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size two pipe sizes larger than pipe and sleeve for installing mechanical sleeve seals.
- R. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.

- 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- S. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.
- T. Verify final equipment locations for roughing-in.
- U. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.
- V. Provide 4" or larger odor hog activated carbon, odor control vapor phase vent pipe filter for all plumbing vent terminations.

3.2 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:

- 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
- 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 Appendixes.
- 3. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
- 4. PVC Nonpressure Piping: Join according to ASTM D 2855.
- 5. PVC to ABS Nonpressure Transition Fittings: Join according to ASTM D 3138 Appendix.
- J. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.

3.3 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 (DN 50) and smaller at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 (DN 65) and larger at final connection to each piece of equipment.
 - 3. Dry Piping Systems: Install dielectric flanges to connect piping materials of dissimilar metals.
 - 4. Wet Piping Systems: Install dielectric nipple fittings to connect piping materials of dissimilar metals.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.5 PAINTING

- A. Painting of plumbing systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting" unless noted otherwise.
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.
- C. Provide protective finishes on all materials and equipment. Use coated or corrosion-resistant materials, hardware and fittings throughout the work. Paint bare, untreated ferrous surfaces with rust-inhibiting paint. All exterior components including supports, hangers, vibration isolators, etc., shall be galvanized or stainless steel. All fasteners including nuts, bolts, washers, rods, etc., shall be stainless steel.
- D. Clean surfaces prior to application of insulation, adhesives, coatings, paint, or other finishes.

- E. Provide factory-applied finishes where specified. Unless otherwise indicated factory-applied paints shall be baked enamel with proper pretreatment.
- F. Protect all finishes and restore any finishes damaged as a result of work under Division 22 to their original condition.
- G. The preceding requirements apply to all work, whether exposed or concealed.
- H. Remove all construction marking and writing from exposed equipment, piping and building surfaces. Do not paint manufacturer's labels or tags.
- I. All exposed piping, equipment, cast iron boots, etc. shall be painted. Colors shall be selected by the Architect and conform to ANSI Standards.
- J. All gas piping shall be painted yellow by the Plumbing contractor.

3.6 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches (100 mm) larger in both directions than supported unit.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of the base.
 - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 - 7. Use 5000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section "Miscellaneous Cast-in-Place Concrete."

3.7 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 05 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

3.8 GROUTING

- A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.

- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

3.9 SUPPORTS AND HANGERS

- A. Provide supports, hangers, braces, attachments and foundations required for the work. Support and set the work in a thoroughly substantial and workmanlike manner without placing strains on materials, equipment, or building structure, submit shop drawings for approval. Coordinate all work with the requirements of the structural division.
- B. Supports hangers, braces, and attachments shall be standard manufactured items or fabricated structural steel shapes. All interior hangers shall be galvanized or steel with rust inhibiting paint. For uninsulated copper piping/tubing provide copper clad hanger. All exterior hangers shall be constructed of galvanized steel or stainless steel utilizing stainless steel rods, nuts, washers, bolts, etc.

3.10 PROVISIONS FOR ACCESS:

- A. The Contractor shall provide access panels and doors for all concealed equipment, valves, strainers, cleanouts, traps, and other devices requiring maintenance, service, adjustment, balancing or manual operation.
- B. Where access doors are necessary, furnish and install manufactured steel door assemblies consisting of hinged door, cam locks, and frame designed for the particular wall or ceiling construction. Properly locate each door. All proposed access door locations shall be approved by the Architect prior to installation. Door size shall be a minimum of 24" x 24" unless otherwise approved by the Architect/Engineer. Provide UL Approved and labeled access doors where installed in fire rated walls or ceilings. Doors shall be Milcor Metal Access Doors as manufactured by Inland-Ryerson, or approved equal.
 - 1. Acoustical or Cement Plaster: Style B
 - 2. Hard Finish Plaster: Style K or L
 - 3. Masonry or Dry Wall: Style M
- C. Where access is by means of lift-out ceiling tiles or panels, mark each panel using small colorcoded or numbered tabs. Provide a chart or index for identification. Charts shall be similar to valve charts specified hereinafter. Provide chart in O & M Manual and in the Mechanical Equipment Room. Screw markers shall be mounted on the ceiling grid using the owner's standard for marking and ID.
- D. Access panels, doors, etc., described herein shall be furnished under the section of specifications providing the particular service to be turned over to the pertinent trade for installation. Coordinate installation with installing Contractor. Coordinate locations with the Architect prior to installation.

3.11 PROTECTION OF WORK:

- A. Protect work, material and equipment from weather and construction operations before and after installation. Properly store and handle all materials and equipment.
- B. Cover temporary openings in piping and equipment to prevent the entrance of water, dirt, debris, or other foreign matter.
- C. Cover or otherwise protect all finishes.
- D. Replace damaged materials, devices, finishes and equipment.

3.12 OPERATION OF EQUIPMENT:

- A. Clean all systems and equipment prior to initial operation for testing, or other purposes. Lubricate, adjust, and test all equipment in accordance with manufacturer's instructions. Do not operate equipment unless all proper safety devices or controls are operational. Provide all maintenance and service for equipment that is authorized for operation during construction.
- B. Provide the services of the manufacturer's factory-trained servicemen or technicians to start up the equipment.
- C. Do not use plumbing systems for temporary services during construction unless authorized in writing by the Owner or Architect. Where such authorization is granted, temporary use of equipment shall in no way limit or otherwise affect warranties or guaranty period of the work. All equipment safeties shall be functional and equipment operated within the recommended and designed parameters.
- D. Upon completion of work, clean and restore all equipment to new conditions; replace expendable items such as filters, blowdown all strainers, etc.

3.13 IDENTIFICATIONS, FLOW DIAGRAMS, ELECTRICAL DIAGRAMS AND OPERATING INSTRUCTIONS

- A. Contractor shall submit for approval schematic piping diagrams of each piping system installed in the building. Diagrams shall indicate valve location, service, type (i.e., butterfly, globe, ball, etc.) make, model number and the identification number of each valve in the particular system. Following approval by all authorities, the diagrams shall be framed, mounted under glass and hung in the Mechanical Room where directed. Contractor shall deliver the AutoCAD or Revit developed color print and DVD or CD from which the diagrams were reproduced to the Owner.
- B. All valves shall be plainly tagged.
- C. All items of equipment shall be furnished with white letters and numbers on laminated identification plates using the owner's coding system to match the owner's PM system requirements. Lettering shall be a minimum of 1/4" high. Identification plates shall be securely affixed to each piece of equipment, starters, panels, etc., by screws or adhesive (Tuff-bond #TB2 or as approved equal). Pressure sensitive tape backing is prohibited for all concealed equipment and devices located above drop tile ceilings.
- D. Provide three (3) copies of operating and maintenance instructions for all principal items of equipment furnished. This material shall be bound as a volume of the "Record and Information Booklet" complete with electronic copy as hereinafter specified.

- E. All lines (piping) installed under this contract shall be stenciled with "direction of flow" arrows and with stenciled letters naming each pipe and service.
- F. Provide at least 8 hours of straight time instruction to the operating personnel. This instruction period shall consist of not less than one (1) consecutive 8-hour day. Time of instruction shall be designated by the Owner. All instruction periods shall be video-taped, DVD format. Turn two (2) copies of disks over to the Owner after successful demonstration and training.

3.14 WALL AND FLOOR PENETRATION:

A. All penetrations of partitions, ceilings, and floors by piping or conduit under Division 22 shall be sealed and caulked airtight for sound and air transfer control and/or fire stopped for fire walls and floors.

3.15 RECORD DRAWINGS:

A. Upon completion of the plumbing installations, the Contractor shall deliver to the Architect one complete set of the plumbing contract drawings which shall be legibly marked in red pencil to show all changes and departures of the installation as compared with the original design. They shall be suitable for use in preparation of Record Drawings. Additionally the contractor shall provide an electronic copy of the record drawings.

3.16 GUARANTEE:

- A. Contractor's attention is directed to guarantee obligations contained in the GENERAL CONDITIONS.
- B. The above shall not in any way void or abrogate equipment manufacturer's guarantee or warranty. Certificates of guarantee shall be included in the operations and maintenance manuals.
- C. Contractor shall also provide, when due to malfunction, two (2) years free service, from the time of substantial completion by the Owner, to keep the equipment in operating condition. This service shall be rendered upon request when notified of any equipment malfunctions.
- D. All refrigeration compressors shall be provided with a five (5) year parts and labor warranty, including replacement of refrigerant.
- E. Refer to Alternates Specification Section for additional information regarding warranty requirements.

3.17 LUBRICATION

- A. All bearings, motors, and all equipment requiring lubrication shall be provided with accessible fittings for same. Before turning over the equipment to the Owner, the Contractor shall fully lubricate each item of equipment, shall provide one year's supply of lubricant for each, and shall provide Owner with complete written lubricating instructions, together with diagram locating the points requiring lubrication. Include this information in the Record and Information Booklet.
- B. In general, all motors and equipment shall be provided with grease lubricated roller or ball bearings with Alemite or equal accessible or extended grease fittings and drain plugs.

C. Provide pressure relief fittings at all grease lubrication locations designed to automatically vent within the range of 1/4 to 1 psi, automatically reset below this range, or another pressure relief range if the preceding differs from the manufacturer's recommended pressure range.

3.18 **RECORD AND INFORMATION BOOKLET:**

- Α. The Contractor shall have prepared three (3) copies of the Record and Information Booklet and deliver these copies of the booklet to the Owner. The booklet shall be as specified herein. The booklet must be approved and will not be accepted as final until so stamped.
- Β. The booklet shall be bound in a three-ring loose-leaf binder similar to "National" No. 3881 with the following title lettered on the front: "Record and Information Booklet (insert name of the project)". No sheets larger than 8-1/2" x 11" shall be used, except sheets that may be neatly folded to 8-1/2" x 11" and used as a pull-out.
- C. All booklet information shall also be provided in electronic format, PDF files, stored on a CD or DVD. Each binder shall contain an envelope sleeve containing the electronic format media (CD's or DVD's).
- D. Provide the following data in the booklet:
 - Catalog data on each piece of plumbing equipment furnished. 1.
 - Maintenance operation and lubrication instructions on each piece of equipment furnished. 2.
 - 3. Complete catalog data on each piece of plumbing equipment furnished, including approved shop drawings.
 - 4. Manufacturer's and Contractors' guarantees.
 - Chart form indicating time and type of routine maintenance of plumbing equipment. The 5. chart shall also indicate tag number, model number of equipment, location and service. For replacement items such as filters, indicate type, size and quantity of the replaceable items.
 - Provide sale and service representatives' names and phone numbers of all equipment 6. and subcontractors.
 - 7. Catalog data of all equipment valves, etc., which shall include wiring diagrams, parts list and assembly drawing.
 - 8. Provide valve chart including valve tag number, valve type, valve model number, valve manufacturer, style, service and location, etc., as specified hereinafter.
 - Provide certification that lead-free and asbestos-free products were provided. 9
 - 10. Provide operating curves indicating design and balanced conditions for pumps.
 - 11. Provide copies of all flushing reports.
 - 12. Provide copies of all start-up reports.
 - DVD's of all demonstration and instructional periods. 13.
 - CD's/DVD's of all coordination drawings. 14.

3.19 TESTS, GENERAL:

- The entire new plumbing systems shall be tested hydrostatically for a duration of four (4) hours Α. before insulation covering is applied and provided tight under the following gauge pressures:
 - Domestic Water & Coil Drain Piping: 1.
 - 2. Sanitary & Storm Water Piping as specified below
 - Sanitary & Storm Water Piping as specified below 3.
 - Natural Gas: 4 100 psi
- All storm, waste, vent and water piping shall be tested by the Contractor and approved by the Β. Engineer and local code official before acceptance. All storm, soil, and waste piping, located

- 100 psi

underground, shall be tested before backfilling. The costs of all equipment required for tests are to be included under the contract price. Refer to paragraph 3.28 for additional information.

- C. The entire new drainage system and venting system shall have all necessary openings plugged and filled with water to the level of the highest stack above or at the roof. The system shall hold this water for thirty (30) minutes without showing a drop greater than 1". Where a portion of the system is to be tested, the test shall be conducted in the same manner as described for the entire system, except a vertical stack 10 feet above the highest horizontal line to be tested may be installed and filled with water to maintain sufficient pressure, or a pump may be used to supply the required pressure. The pressure shall be maintained for thirty (30) minutes.
- D. Upon completion of roughing-in and before setting fixtures, the entire new water piping system shall be tested at a hydrostatic pressure of not less than one hundred (100) pounds per square inch gauge and proved tight at this pressure. Where a portion of the water piping system is to be concealed before completion, this portion shall be tested separately in a manner described for the entire system.
- E. All testing shall be witnessed by local code official and the Owner. The Contractor shall provide a minimum of 48-hour notice before testing. The Contractor shall coordinate with and get approval from the Owner.
- F. Gas Testing:
 - 1. Before any section of a gas piping system is put into service, it shall be carefully tested to assure that it is gastight. Prior to testing, the system shall be blown out, cleaned, and cleared of all foreign material. Each joint shall be tested by means of an approved gas detector, soap and water, or an equivalent nonflammable solution. Testing shall be completed before any work is covered, enclosed, or concealed. All testing of piping system shall be done with due regard for the safety of employees and the public during the test. All testing and purging shall comply with local utility company requirements. Bulkheads, anchorage and bracing suitably designed to resist test pressures shall be installed if necessary. Oxygen shall not be used as a testing medium.
 - 2. Pressure Tests: Before appliances are connected, piping systems shall be filled with air or an inert gas and shall withstand a minimum pressure of 3 pounds gauge for a period of not less than 10 minutes as specified in NFPA 54 without showing any drop in pressure. Oxygen shall not be used. Pressure shall be measured with a mercury manometer, slope gauge, or an equivalent device so calibrated as to be read in increments of not greater than 0.1 pound. The source of pressure shall be isolated before the pressure tests are made.
 - 3. Test with Gas: Before turning gas under pressure into any piping, all openings from which gas can escape shall be closed. Immediately after turning on the gas, the piping system shall be checked for leakage by using a laboratory-certified gas meter, an appliance orifice, a manometer, or equivalent device. All testing shall conform to the requirements of NFPA 54. If leakage is recorded, the gas supply shall be shut off, the leak shall be repaired, and the tests repeated until all leaks have been stopped.
 - 4. Purging: After testing is completed, and before connecting any appliances, all gas piping shall be fully purged. Piping shall not be purged into the combustion chamber of an appliance. The open end of piping systems being purged shall not discharge into confined spaces or areas where there are ignition sources unless the safety precautions recommended in NFPA 54 are followed.
 - 5. Labor, Materials, and Equipment: All labor, materials, and equipment necessary for conducting the testing and purging shall be furnished by the Contractor.

3.20 LINTELS:

A. Under this Section, provide lintels not provided elsewhere which are required for openings for the installation of plumbing work. Lintels shall meet the requirements of the Architectural and Structural Sections and The Architectural Drawings and Specifications.

3.21 EQUIPMENT BY OTHERS

- A. This Contractor shall make all system connections required to equipment furnished and installed under other divisions. Connections shall be complete in all respects to render this equipment functional to its fullest intent.
- B. It shall be the responsibility of the supplier of this equipment to furnish complete instructions for connections.
- C. Typical equipment refers to, but is not limited to: Kiln hoods, storage cabinets and all other kitchen equipment.

3.22 FASTENERS:

A. All fasteners located in public space, including classrooms, offices, etc., shall be provided with tamper-proof type fasteners where specifically indicated.

3.23 WIRING DIAGRAMS

- A. Obtain and submit wiring diagrams for all equipment provided under this Contract.
- B. Wiring diagrams shall be provided with Shop Drawings for similar to, but not limited to, the following:
 - 1. All equipment.
- C. The Contractor shall submit any additional wiring diagrams as requested by the Engineer.
- D. Provide wiring diagrams and identify all termination points, connections, and interface points for all major mechanical equipment to the Electrical Contractor and the ATC Subcontractor for coordination.

3.24 INSTALLATION AND COORDINATION DRAWINGS;

A. The Contractor shall utilize a third party coordination services company to prepare, submit, and use composite installation and coordination drawings to assure proper coordination and installation of work. Drawings shall include, but not be limited, to the following: Complete Ductwork, Plumbing, Sprinkler and HVAC Piping Drawings showing coordination with approved equipment, approved casework drawings, lights, electrical equipment and structural. The Mechanical Contractor is responsible for coordinating with all trades to insure systems will fit in the available space. If conflicts exist after fabrication and/or installation of systems prior to preparing a coordinated drawing of the area, the Contractor shall remove, re-fabricate, and reinstall all such work at their own cost, except for the difference in cost, if any, from the originally designed system to the revised design. If no design changes were made, and clarifications were required, it shall be at no expense to the Owner.

- B. Draw plans to a scale not less than 3/8-inch equals one foot. Include plans, sections, and elevations of proposed work, showing all equipment, piping and ductwork in areas involved. Fully dimension all work including hoods, casework and associated utilities, valve boxes, lighting fixtures, conduits, pullboxes, panelboards, and other electrical work, telecommunications equipment, walls, doors, ceilings, columns, beams, joists and other architectural and structural work. Division 23 shall coordinate the development of composite coordination drawings.
- C. Identify all equipment and devices on wiring diagrams and schematics. Where field connections are shown to factory-wired terminals, include manufacturer's literature showing internal wiring.
- D. All coordination drawings shall be prepared in AutoCAD or Revit format and submitted in color. Different colors shall be used to determine different building components. In addition to the composite coordination drawings, simultaneously submit individual sheet-metal, piping, plumbing and sprinkler coordination drawings.
- E. The Mechanical Contractor shall schedule bi-weekly Coordination Drawing Reviews with the Owner, Mechanical Engineer, and all associated subcontractors, including but not limited to the following:
 - 1. Mechanical Contractor
 - 2. Finishes Contractor
 - 3. Sheet Metal Contractor
 - 4. Sprinkler Contractor
 - 5. Electrical Contractor
 - 6. Plumbing Contractor
 - 7. Owner/Architect/Engineer
 - 8. Commissioning Agent
 - 9. Construction Manager
 - 10. Note: A Foreman or Project Manager responsible for Decision-Making of each company shall attend all Coordination Meetings.
- F. There is very limited space within the facility. The Contractor is cautioned that coordination down to the inch for all system and materials being installed is critical.
- G. The purpose of these meetings is to coordinate proposed installations of systems and equipment, including clearances, routing, penetrations, as well as to review potential conflicts. The Mechanical Contractor shall base preliminary equipment sizes and connections on proposed products and the final coordination drawing for review shall reflect approved/reviewed products. Coordination Meetings shall be held at the Contractor's Field Office.
- H. The installation of any materials is strictly prohibited until coordination drawings have reflected zero conflicts and the design team has reviewed the submission. At no time can deviations occur in the field after coordination drawings have been reviewed without prior written approval from the Architect.

3.25 BOILER AND PRESSURE VESSELS

- A. All boilers and pressure vessels shall be ASME-rated and shall comply with the State of Maryland, latest requirements.
- B. Provide all control devices and materials, and install in with ASME CSD-1 controls and safety devices for automatically fired boilers.

3.26 FACTORY START-UP

- A. Provide factory authorized start-up service for all plumbing equipment. Coordinate with the Commissioning Agent.
- B. Provide one copy of all start-up reports to the Owner and include a copy in the O&M Manual.
- C. Tempering Valves: Provide factory-authorized individual to review installation and develop a report to submit to the Engineer. Report submission shall be prior to Engineer's Punch-Out and Demonstration/Training.
- D. The Contractor shall be required to start up all systems in an orderly, organized, and coordinated manner to ensure that all systems are functioning as designed. The Contractor shall provide a detailed start-up, testing and demonstration plan for all systems in a coordinated manner that is documented in writing at least forty-five (45) days prior to start-up. Start-up, testing, and demonstration plans shall include detailed point-by-point check list that clearly shows that systems are in face functioning as designed. The A/E shall include modifications to the standard AIA definition of substantial completion to indicate that Mechanical/Electrical Systems are not substantially complete until all systems are started, tested, balanced, and O&M Manuals are received by the Owner. Above listed items must be completed in time to allow for system demonstrations to Owner Personnel with all O&M Manuals in hand at the time of demonstration. Contractors will be required to provide system demonstrations and training for Owner Personnel for each system. At minimum, the Contractors shall provide eight (8) hours of demonstration and eight (8) hours of systems operation training for each system prior to Owner acceptance of any given system.

3.27 PLUMBING INSTALLATIONS

- A. General: Sequence, coordinate, and integrate the various elements of plumbing systems, materials, and equipment including, but not limited to, the following:
 - 1. Coordinate plumbing systems, equipment and materials installation with other building components.
 - 2. Verify all dimensions by field measurements.
 - 3. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for mechanical installations.
 - 4. Coordinate the installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
 - 5. Sequence, coordinate, and integrate installations of mechanical materials and equipment for efficient flow of the work. Give particular attention to large equipment requiring positioning prior to closing in the building.
 - 6. Where mounting heights are not detailed, noted, or dimensioned, install systems, materials, and equipment to provide the maximum headroom possible.
 - 7. Coordinate connection of mechanical systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies. Provide required connection for each service.
 - 8. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings, to greatest extent possible. Conform to arrangements indicated by the Contract Documents, recognizing that portions of the work are shown only in diagrammatic form.
 - 9. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed exposed in finished space.
 - 10. Install mechanical equipment to facilitate service, maintenance, and repair or replacement of equipment components in accordance with manufacturers'

recommendations. Connect equipment for ease of disconnecting, with minimum of interference with other installations. Extend grease fittings to an accessible location.

- 11. Install access panels or doors where units are concealed behind finished surfaces.
- 12. Install systems, materials, and equipment giving right-of-way priority to systems required to be installed at a specified slope.
- 13. Install above-ceiling equipment requiring servicing and/or maintenance within 48" of accessible ceilings/access panels.
- 14. Test and balance the domestic hot water/hot water recirculation system.
- 15. Where different pipe sizes are indicated on the Drawings, the largest pipe size shall be used for the basis of the Bid.

3.28 SCHEDULING OF WORK AND OUTAGES

- A. All required outages shall be coordinated with and approved by the Owner a minimum of fourteen (14) days in advance. Written notice of not less than fourteen (14) calendar days shall precede any outage. The Contractor shall include in their bid outages and/or work in occupied areas to occur during weekends, holidays, or at night. No outages are allowed during occupied hours.
- B. All temporary utilities shall be provided by and paid for by the Contractor. All utilities serving the existing building(s) shall be maintained; or temporary piping, equipment, etc., shall be provided so as not to affect the normal function and operation of the building and its systems. Coordinate these requirements with the Owner.
- C. The Contractor shall notify the Owner within 72 hours prior to having the AHJ coming out to witness any/all hydro-static pressure testing, gravity testing of sanitary or storm water piping and testing of all domestic water and gas piping systems.
- 3.29 COMMISSIONING:
 - A. All systems shall be commissioned by an independent Commissioning Agent. Coordinate all commissioning activities and start up services with the Commissioning Agent.

3.30 EXISTING PLUMBING PIPING SYSTEMS:

A. The Contractor shall high pressure water jet all existing sanitary and storm water lines being reused. Video tape all existing lines after water jetting and turn over to Owner.

END OF SECTION 220500

SECTION 226323

FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipes, tubes, and fittings.
 - 2. Piping specialties.
 - 3. Piping and tubing joining materials.
 - 4. Valves.
 - 5. Pressure regulators.
 - 6. Service meters.
 - 7. Concrete bases.

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

1.4 PERFORMANCE REQUIREMENTS

- A. Minimum Operating-Pressure Ratings:
 - 1. Piping and Valves: 100 psig (690 kPa) minimum unless otherwise indicated.
 - 2. Service Regulators: 100 psig (690 kPa) minimum unless otherwise indicated.
 - 3. Minimum Operating Pressure of Service Meter: 5 psig (34.5 kPa) –coordinate with Columbia Gas.
- B. Natural-Gas System Pressure within Buildings: More than 0.5 psig (3.45 kPa) but not more than 2 psig (13.8 kPa).

C. Natural-Gas System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 0.5 psig (3.45 kPa) but not more than 2 psig (13.8 kPa), and is reduced to secondary pressure of 0.5 psig (3.45 kPa) or less.

1.5 SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Piping specialties.
 - 2. Corrugated, stainless-steel tubing with associated components.
 - 3. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
 - 4. Pressure regulators. Indicate pressure ratings and capacities.
 - 5. Dielectric fittings.
- B. Coordination Drawings: Plans and details, drawn to scale, on which natural-gas piping is shown and coordinated with other installations, using input from installers of the items involved.
- C. Site Survey: Plans, drawn to scale, on which natural-gas piping is shown and coordinated with other services and utilities.
- D. Welding certificates.
- E. Field quality-control reports.
- F. Operation and Maintenance Data: For motorized gas valves and pressure regulator to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.
- B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.
- D. Protect stored PE pipes and valves from direct sunlight.

1.8 PROJECT CONDITIONS

- A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.
- B. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide purging and startup of natural-gas supply according to requirements indicated:
 - 1. Notify Architect and Owner no fewer than seven days in advance of proposed interruption of natural-gas service.
 - 2. Do not proceed with interruption of natural-gas service without Architect's and Owner's written permission.
 - 3. Disruptions during normal building hours is not permitted.

1.9 COORDINATION

- A. Coordinate sizes and locations of concrete bases with actual equipment provided.
- B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces.

PART 2 - PRODUCTS

- 2.1 PIPES, TUBES, AND FITTINGS
 - A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern.
 - 2. Wrought-Steel Welding Fittings: ASTM A 234/A 234M for butt welding and socket welding.
 - 3. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.
 - 4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - a. Material Group: 1.1.
 - b. End Connections: Threaded or butt welding to match pipe.
 - c. Lapped Face: Not permitted underground.
 - d. Gasket Materials: ASME B16.20, metallic, flat, asbestos free, aluminum o-rings, and spiral-wound metal gaskets.
 - e. Bolts and Nuts: ASME B18.2.1, galvanized
 - f. steel aboveground and stainless steel underground.
 - 5. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 - a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.
 - 6. Mechanical Couplings:

- a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Dresser Piping Specialties; Division of Dresser, Inc.
 - 2) Smith-Blair, Inc.
- b. Steel flanges and tube with epoxy finish.
- c. Buna-nitrile seals.
- d. Stainless-steel bolts, washers, and nuts.
- e. Coupling shall be capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.
- f. Steel body couplings installed underground on plastic pipe shall be factory equipped with anode.
- B. PE Pipe: ASTM D 2513, SDR 11.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the work include, but are not limited to, the following:
 - a. Duraline HDPE Bimodal PolyPipe
 - 2. PE Fittings: ASTM D 2683, socket-fusion type or ASTM D 3261, butt-fusion type with dimensions matching PE pipe.
 - 3. PE Transition Fittings: Factory-fabricated fittings with PE pipe complying with ASTM D 2513, SDR 11; and steel pipe complying with ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 - 4. Anodeless Service-Line Risers: Factory fabricated and leak tested.
 - a. Underground Portion: PE pipe complying with ASTM D 2513, SDR 11 inlet.
 - b. Casing: Steel pipe complying with ASTM A 53/A 53M, Schedule 40, black steel, Type E or S, Grade B, with corrosion-protective coating covering.
 - c. Aboveground Portion: PE transition fitting.
 - d. Outlet shall be threaded or suitable for welded connection.
 - e. Tracer wire connection.
 - f. Ultraviolet shield.
 - g. Stake supports with factory finish to match steel pipe casing or carrier pipe.
 - 5. Transition Service-Line Risers: Factory fabricated and leak tested.
 - a. Underground Portion: PE pipe complying with ASTM D 2513, SDR 11 inlet connected to steel pipe complying with ASTM A 53/A 53M, Schedule 40, Type E or S, Grade B, with corrosion-protective coating for aboveground outlet.
 - b. Outlet shall be threaded or suitable for welded connection.
 - c. Bridging sleeve over mechanical coupling.
 - d. Factory-connected anode.
 - e. Tracer wire connection.
 - f. Ultraviolet shield.
 - g. Stake supports with factory finish to match steel pipe casing or carrier pipe.

2.2 PIPING SPECIALTIES

A. Appliance Flexible Connectors:

- 1. Indoor, Fixed-Appliance Flexible Connectors: Comply with ANSI Z21.24.
- 2. Indoor, Movable-Appliance Flexible Connectors: Comply with ANSI Z21.69.
- 3. Outdoor, Appliance Flexible Connectors: Comply with ANSI Z21.75.
- 4. Corrugated stainless-steel tubing with polymer coating.
- 5. Operating-Pressure Rating: 0.5 psig (3.45 kPa).
- 6. End Fittings: Zinc-coated steel.
- 7. Threaded Ends: Comply with ASME B1.20.1.
- 8. Maximum Length: 72 inches (1830 mm).
- B. Quick-Disconnect Devices: Comply with ANSI Z21.41.
 - 1. Copper-alloy convenience outlet and matching plug connector.
 - 2. Nitrile seals.
 - 3. Hand operated with automatic shut-off when disconnected.
 - 4. For indoor or outdoor applications.
 - 5. Adjustable, retractable restraining cable.
- C. Y-Pattern Strainers:
 - 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 (DN 65) and larger.
 - 3. Strainer Screen: 60-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
 - 4. CWP Rating: 125 psig (862 kPa).
- D. Basket Strainers:
 - 1. Body: ASTM A 126, Class B, high-tensile cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 (DN 65) and larger.
 - 3. Strainer Screen: 60-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
 - 4. CWP Rating: 125 psig (862 kPa).
- E. T-Pattern Strainers:
 - 1. Body: Ductile or malleable iron with removable access coupling and end cap for strainer maintenance.
 - 2. End Connections: Grooved ends.
 - 3. Strainer Screen: 60-mesh startup strainer, and perforated stainless-steel basket with 57 percent free area.
 - 4. CWP Rating: 750 psig (5170 kPa).
- F. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threadedend connection.

2.3 JOINING MATERIALS

A. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

B. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F (540 deg C) complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.4 MANUAL GAS SHUTOFF VALVES

- A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.
- B. General Requirements for Metallic Valves, NPS 2 (DN 50) and Smaller: Comply with ASME B16.33.
 - 1. CWP Rating: 125 psig (862 kPa).
 - 2. Threaded Ends: Comply with ASME B1.20.1.
 - 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 - 4. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch (25 mm) and smaller.
 - 6. Service Mark: Valves 1-1/4 inches (32 mm) to NPS 2 (DN 50) shall have initials "WOG" permanently marked on valve body.
- C. General Requirements for Metallic Valves, NPS 2-1/2 (DN 65) and Larger: Comply with ASME B16.38.
 - 1. CWP Rating: 125 psig (862 kPa).
 - 2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
 - 3. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 4. Service Mark: Initials "WOG" shall be permanently marked on valve body.
- D. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. BrassCraft Manufacturing Company; a Masco company.
 - b. Conbraco Industries, Inc.; Apollo Div.
 - c. Lyall, R. W. & Company, Inc.
 - d. McDonald, A. Y. Mfg. Co.
 - e. Perfection Corporation; a subsidiary of American Meter Company.
 - f. Maxitrol.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Ball: Chrome-plated bronze.
 - 4. Stem: Bronze; blowout proof.
 - 5. Seats: Reinforced TFE; blowout proof.
 - 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 - 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 8. CWP Rating: 600 psig (4140 kPa).

- 9. Listing: Valves NPS 1 (DN 25) and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
- 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- E. Bronze Plug Valves: MSS SP-78.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Lee Brass Company.
 - b. McDonald, A. Y. Mfg. Co.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Plug: Bronze.
 - 4. Ends: Threaded, socket, or flanged as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 5. Operator: Square head or lug type with tamperproof feature where indicated.
 - 6. Pressure Class: 125 psig (862 kPa).
 - 7. Listing: Valves NPS 1 (DN 25) and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- F. Cast-Iron, Nonlubricated Plug Valves: MSS SP-78.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. McDonald, A. Y. Mfg. Co.
 - b. Mueller Co.; Gas Products Div.
 - c. Xomox Corporation; a Crane company.
 - 2. Body: Cast iron, complying with ASTM A 126, Class B.
 - 3. Plug: Bronze or nickel-plated cast iron.
 - 4. Seat: Coated with thermoplastic.
 - 5. Stem Seal: Compatible with natural gas.
 - 6. Ends: Threaded or flanged as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 7. Operator: Square head or lug type with tamperproof feature where indicated.
 - 8. Pressure Class: 125 psig (862 kPa).
 - 9. Listing: Valves NPS 1 (DN 25) and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- G. Valve Boxes:
 - 1. Cast-iron, two-section box.
 - 2. Top section with cover with "GAS" lettering.
 - 3. Bottom section with base to fit over valve and barrel a minimum of 5 inches (125 mm) in diameter.
 - 4. Adjustable cast-iron extensions of length required for depth of bury.
 - 5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head, and with stem of length required to operate valve.

2.5 MOTORIZED GAS VALVES

- A. Automatic Gas Valves: Comply with ANSI Z21.21.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ASCO Power Technologies, LP; Division of Emerson.
 - b. Dungs, Karl, Inc.
 - c. Eaton Corporation; Controls Div.
 - d. Eclipse Combustion, Inc.
 - e. Honeywell International Inc.
 - f. Johnson Controls.
 - 2. Body: Brass or aluminum.
 - 3. Seats and Disc: Nitrile rubber.
 - 4. Springs and Valve Trim: Stainless steel.
 - 5. Normally closed.
 - 6. Visual position indicator.
 - 7. Electrical operator for actuation by appliance automatic shutoff device.
- B. Electrically Operated Valves: Comply with UL 429.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ASCO Power Technologies, LP; Division of Emerson.
 - b. Dungs, Karl, Inc.
 - c. Eclipse Combustion, Inc.
 - d. Goven Valve Corp.; Tyco Environmental Systems.
 - e. Magnatrol Valve Corporation.
 - f. Parker Hannifin Corporation; Climate & Industrial Controls Group; Skinner Valve Div.
 - g. Watts Regulator Co.; Division of Watts Water Technologies, Inc.
 - 2. Pilot operated.
 - 3. Body: Brass or aluminum.
 - 4. Seats and Disc: Nitrile rubber.
 - 5. Springs and Valve Trim: Stainless steel.
 - 6. 120-V ac, 60 Hz, Class B, continuous-duty molded coil, and replaceable.
 - 7. NEMA ICS 6, Type 4, coil enclosure.
 - 8. Normally closed.
 - 9. Visual position indicator.

2.6 PRESSURE REGULATORS

- A. General Requirements:
 - 1. Single stage and suitable for natural gas.
 - 2. Steel jacket and corrosion-resistant components.
 - 3. Elevation compensator.
 - 4. End Connections: Threaded for regulators NPS 2 (DN 50) and smaller; flanged for regulators NPS 2-1/2 (DN 65) and larger.

- B. Service Pressure Regulators: Comply with ANSI Z21.80.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 - b. Invensys.
 - c. Equimeter.
 - 2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
 - 3. Springs: Zinc-plated steel; interchangeable.
 - 4. Diaphragm Plate: Zinc-plated steel.
 - 5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
 - 6. Orifice: Aluminum; interchangeable.
 - 7. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
 - 8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
 - 9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
 - 10. Overpressure Protection Device: Factory mounted on pressure regulator.
 - 11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
 - 12. Maximum Inlet Pressure: 100 psig (690 kPa).
- C. Line Pressure Regulators: Comply with ANSI Z21.80.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 - b. Invensys.
 - c. Maxitrol Company.
 - d. Equimeter.
 - 2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
 - 3. Springs: Zinc-plated steel; interchangeable.
 - 4. Diaphragm Plate: Zinc-plated steel.
 - 5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
 - 6. Orifice: Aluminum; interchangeable.
 - 7. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
 - 8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
 - 9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
 - 10. Overpressure Protection Device: Factory mounted on pressure regulator.
 - 11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
 - 12. Maximum Inlet Pressure: 2 psig (13.8 kPa).
- D. Appliance Pressure Regulators: Comply with ANSI Z21.18.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- a. Eclipse.
- b. Eaton Corporation; Controls Div.
- c. Harper Wyman Co.
- d. Maxitrol Company.
- e. SCP, Inc.
- f. Fischer.
- 2. Body and Diaphragm Case: Die-cast aluminum.
- 3. Springs: Zinc-plated steel; interchangeable.
- 4. Diaphragm Plate: Zinc-plated steel.
- 5. Seat Disc: Nitrile rubber.
- 6. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
- 7. Factory-Applied Finish: Minimum three-layer polyester and polyurethane paint finish.
- 8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.
- 9. Maximum Inlet Pressure: 2 psig (13.8 kPa).

2.7 DIELECTRIC FITTINGS

- A. Dielectric Flanges:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Watts Regulator Co.; Division of Watts Water Technologies, Inc.
 - d. Wilkins; Zurn Plumbing Products Group.
 - 2. Minimum Operating-Pressure Rating: 150 psig (1034 kPa).
 - 3. Combination fitting of copper alloy and ferrous materials.
 - 4. Insulating materials suitable for natural gas.
 - 5. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, plain, or welded end connections that match piping system materials.
- B. Dielectric-Flange Kits:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Minimum Operating-Pressure Rating: 150 psig (1034 kPa).
 - 3. Companion-flange assembly for field assembly.
 - 4. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or PE bolt sleeves, phenolic washers, and steel backing washers.
 - 5. Insulating materials suitable for natural gas.
 - 6. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, plain, or welded end connections that match piping system materials.
- C. Dielectric unions and couplings are not permitted.

2.8 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches (150 mm) wide and 4 mils (0.1 mm) thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches (750 mm) deep; colored yellow.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Close equipment shutoff valves before turning off natural gas to premises or piping section.
- B. Inspect natural-gas piping according to NFPA 54 and the International Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.
- C. Comply with NFPA 54 and the International Fuel Gas Code requirements for prevention of accidental ignition.

3.3 OUTDOOR PIPING INSTALLATION

- A. Comply with NFPA 54, the International Fuel Gas Code and utility provider for installation and purging of natural-gas piping.
- B. Install underground, natural-gas piping buried at least 36 inches (900 mm) below finished grade. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.
 - 1. If natural-gas piping is installed less than 36 inches (900 mm) below finished grade, install it in containment conduit.
- C. Install underground, PE, natural-gas piping according to ASTM D 2774.
- D. Steel Piping with Protective Coating:
 - 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 - 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
 - 3. Replace pipe having damaged PE coating with new pipe.

3.4 INDOOR PIPING INSTALLATION

- A. Comply with NFPA 54 and the International Fuel Gas Code for installation and purging of natural-gas piping.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
- D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- G. Locate valves for easy access.
- H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.
- I. Install piping free of sags and bends.
- J. Install fittings for changes in direction and branch connections.
- K. Verify final equipment locations for roughing-in.
- L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.
- M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 - 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches (75 mm) long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.
- N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap and relief vent pipe and fittings shall be galvanized.
- O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.
- P. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.

- 1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.
- 2. In Floors: Install natural-gas piping with welded or brazed joints and protective coating in cast-in-place concrete floors. Cover piping to be cast in concrete slabs with minimum of 1-1/2 inches (38 mm) of concrete. Piping may not be in physical contact with other metallic structures such as reinforcing rods or electrically neutral conductors. Do not embed piping in concrete slabs containing quick-set additives or cinder aggregate.
- 3. In Floor Channels: Install natural-gas piping in floor channels. Channels must have cover and be open to space above cover for ventilation.
- 4. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.
 - a. Exception: Tubing passing through partitions or walls does not require striker barriers.
- 5. Prohibited Locations:
 - a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
 - b. Do not install natural-gas piping in solid walls or partitions.
- Q. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
- R. Connect branch piping from top or side of horizontal piping.
- S. Install unions in pipes NPS 2 (DN 50) and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.
- T. Do not use natural-gas piping as grounding electrode.
- U. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.
- V. Install pressure gauge upstream and downstream from each line regulator. Pressure gauges are specified in Division 23 Section "Meters and Gauges for HVAC Piping."
- W. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."
- X. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."
- Y. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 23 Section "Escutcheons for HVAC Piping."
- Z. Provide a manual gas shut-off valve(s) for gas piping serving individual appliances and kitchen equipment.
- AA. Provide a gas pressure regulator to reduce pressure to gas piping serving individual appliances and kitchen equipment.

- BB. Coordinate all gas piping requirements, type of outlets, locations, and quantities of outlets with the kitchen/food service Contractor. Refer to the kitchen/food service Specifications and Architectural Drawings for additional information regarding gas piping systems services, outlets, and requirements serving the kitchen.
- CC. Appliances include but not limited to makeup air unit, boilers, water heaters, emergency generator and all cooking equipment.
- DD. Install all valving and piping to the emergency generator in accordance with the authorities having jurisdiction, IPC, NFPA and the manufacturers recommendations.

3.5 VALVE INSTALLATION

- A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, aluminum, or copper connector.
- B. Install underground valves with valve boxes.
- C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.
- D. Install anode for metallic valves in underground PE piping.

3.6 PIPING JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Threaded Joints:
 - 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 - 2. Cut threads full and clean using sharp dies.
 - 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 - 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 - 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- D. Welded Joints:
 - 1. Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators.
 - 2. Bevel plain ends of steel pipe.
 - 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.
- F. Flanged Joints: Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.

G. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.

3.7 HANGER AND SUPPORT INSTALLATION

- A. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1 (DN 25) and Smaller: Maximum span, 96 inches (2438 mm); minimum rod size, 3/8 inch (10 mm).
 - 2. NPS 1-1/4 (DN 32): Maximum span, 108 inches (2743 mm); minimum rod size, 3/8 inch (10 mm).
 - 3. NPS 1-1/2 and NPS 2 (DN 40 and DN 50): Maximum span, 108 inches (2743 mm); minimum rod size, 3/8 inch (10 mm).
 - 4. NPS 2-1/2 to NPS 3-1/2 (DN 65 to DN 90): Maximum span, 10 feet (3 m); minimum rod size, 1/2 inch (13 mm).
 - 5. NPS 4 (DN 100) and Larger: Maximum span, 10 feet (3 m); minimum rod size, 5/8 inch (15.8 mm).

3.8 CONNECTIONS

- A. Connect to utility's gas main according to utility's procedures and requirements.
- B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.
- C. Install piping adjacent to appliances to allow service and maintenance of appliances.
- D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches (1800 mm) of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.
- E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.
- F. Install flexible pipe connections on inlet and outlet gas booster connections.

3.9 LABELING AND IDENTIFYING

- A. Comply with requirements in Division 23 Section "Identification for HVAC Piping and Equipment" for piping and valve identification.
- B. Install detectable warning tape directly above gas piping, 12 inches (300 mm) below finished grade, except 6 inches (150 mm) below subgrade under pavements and slabs.

3.10 PAINTING

A. Comply with requirements in Division 09 painting Sections for painting interior and exterior natural-gas piping.

- B. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 - 1. Alkyd System: MPI EXT 5.1D.
 - a. Prime Coat: Alkyd anticorrosive metal primer.
 - b. Intermediate Coat: Exterior alkyd enamel matching topcoat.
 - c. Topcoat: Exterior alkyd enamel (semigloss).
 - d. Color: Yellow.
- C. Paint exposed, interior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 - 1. Latex Over Alkyd Primer System: MPI INT 5.1Q.
 - a. Prime Coat: Quick-drying alkyd metal primer.
 - b. Intermediate Coat: Interior latex matching topcoat.
 - c. Topcoat: Interior latex (flat).
 - d. Color: Yellow.
 - 2. Alkyd System: MPI INT 5.1E.
 - a. Prime Coat: Quick-drying alkyd metal primer.
 - b. Intermediate Coat: Interior alkyd matching topcoat.
 - c. Topcoat: Interior alkyd (flat).
 - d. Color: Yellow.
- D. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.11 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Test, inspect, and purge natural gas according to NFPA 54 and the International Fuel Gas Code and authorities having jurisdiction.
- C. Natural-gas piping will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. The gas booster system manufacturer shall provide all required field service assistance to the contractor for installation supervision and equipment start up.

3.12 OUTDOOR PIPING SCHEDULE

A. Aboveground natural-gas and gas vent piping shall be the following:

- 1. Hot Dipped Galvanized Schedule 40 Steel pipe with malleable-iron fittings and threaded joints.
- 3.13 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG (3.45 kPa)
 - A. Aboveground, branch piping NPS 1 (DN 25) and smaller shall be the following:
 1. Schedule 40 Steel pipe with malleable-iron fittings and threaded joints.
 - B. Aboveground, distribution piping NPS 2 (DN 50) and smaller shall be the following:
 1. Schedule 40 Steel pipe with malleable-iron fittings and threaded joints.
 - C. Aboveground, distribution piping NPS 2-1/2 (DN 65) and larger shall be the following:
 1. Schedule 40 Steel pipe with wrought-steel fittings and welded joints.
 - D. Underground, below building, piping shall be one of the following:
 1. Steel pipe with wrought-steel fittings and welded joints.
 - E. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
 - F. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.
- 3.14 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES MORE THAN 0.5 PSIG (3.45 kPa) AND LESS THAN 5 PSIG (34.5 kPa)
 - A. Aboveground, branch piping NPS 1 (DN 25) and smaller shall be the following:
 1. Schedule 40 Steel pipe with malleable-iron fittings and threaded joints.
 - A. Aboveground, distribution piping NPS 2 (DN 50) and smaller shall be the following:
 1. Schedule 40 Steel pipe with malleable-iron fittings and threaded joints.
 - B. Aboveground, distribution piping NPS 2-1/2 (DN 65) and larger shall be the following:
 1. Schedule 40 Steel pipe with wrought-steel fittings and welded joints.
 - C. Underground, below building, piping shall be the following:
 1. Schedule 40 Steel pipe with wrought-steel fittings and welded joints.
 - D. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat underground pipe and fittings with protective coating for steel piping.
 - E. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

3.15 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Valves for pipe sizes NPS 2 (DN 50) and smaller at service meter shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.

- 3. Bronze plug valve.
- B. Valves for pipe sizes NPS 2-1/2 (DN 65) and larger at service meter shall be one of the following:
 - 1. Two-piece, full -port, bronze ball valves with bronze trim.
 - 2. Bronze plug valve.
 - 3. Cast-iron, nonlubricated plug valve.
- C. Distribution piping valves for pipe sizes NPS 2 (DN 50) and smaller shall be one of the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.
 - 2. Bronze plug valve.
- D. Distribution piping valves for pipe sizes NPS 2-1/2 (DN 65) and larger shall be one of the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.
 - 2. Bronze plug valve.
 - 3. Cast-iron, nonlubricated plug valve.
- E. Valves in branch piping for single appliance shall be one of the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.
 - 2. Bronze plug valve.

END OF SECTION 226323

SECTION 260000

GENERAL ELECTRICAL REQUIREMENTS

PART 1 - GENERAL

1.1 GENERAL

- A. Provide all labor, materials, equipment and services necessary for and incidental to the complete installation and operation of all electrical work.
- B. All work under this Division is subject to the General Conditions and Special Requirements for the entire contract.
- C. Unless otherwise specified, all shop drawings and submissions required under Division 26 shall be made to, and acceptances and approvals made by, the ENGINEER.
- D. Conform to the requirements of all rules, regulations, and codes of local, state, and federal authorities having jurisdiction. Conform to the National Electrical Code and all NECA National Electrical Installation Standards (NEIS).
- E. Perform the work in a first-class, substantial, and workmanlike manner. Any materials installed which do not present an orderly and neat workmanlike appearance shall be removed and replaced when so directed by the Engineer, at the Contractor's expense.
- F. Coordinate the work of all trades.
- G. Arrange conduit, wiring, equipment, and other work generally as shown, providing proper clearances and access. Carefully examine all contract drawings and fit the work in each location without substantial alteration. Where departures are proposed because of field conditions or other causes, prepare and submit detailed drawings for approval in accordance with "Submittals" specified below. The right is reserved to make reasonable changes in location of equipment, conduit, and wiring up to the time of rough-in or fabrication.
- H. The contract drawings are generally diagrammatic and all offsets, bends, fittings, and accessories are not necessarily shown. Provide all such items as may be required to fit the work to the conditions.
- I. Be responsible for all construction means, methods, techniques, procedures, and phasing sequences used in the work. Furnish all tools, equipment and materials necessary to properly perform the work in a first class, substantial, and workmanlike manner, in accordance with the full intent and meaning of the Contract Documents.
- J. The Contractor shall provide other work and services not otherwise included in the Contract Documents that are customarily forwarded in accordance with generally-accepted construction practices.
- 1.2 PERMITS, INSPECTIONS, AND FEES:
 - A. The Contractor shall obtain and pay for all charges and fees, and deliver all permits, licenses, certificates of inspection, etc., required by the authorities having jurisdiction. Deliver inspection, approval, and other certificates to the Owner prior to final acceptance of the work.
 - B. File necessary plans, prepare documents, give proper notices, and obtain necessary approvals.

- C. Permits and fees shall comply with the General Requirements of the Specification.
- D. Notify Inspection Authorities to schedule inspections of work. All work shall be subject to field inspections.
- E. Notify Architect in advance of scheduled inspections.
- F. An electrical foreman, superintendent or other supervisor shall be in attendance for all scheduled inspections.
- G. The Contractor shall provide an electrical certificate from an independent electrical inspection agency approved by the Owner and the State of Maryland Fire Marshal. The Contractor shall submit certificate prior to final payment invoice. The Contractor shall pay all fees, including filing fees.
- 1.3 ELECTRICAL WORK UNDER OTHER DIVISIONS:
 - A. Mechanical Equipment and Systems
 - 1. In general, power wiring and motor starting equipment for mechanical equipment and systems are furnished and installed under Electrical Division 26.
 - 2. Certain mechanical units contain starters, contacts, transformers, fuses, wiring, etc., required for fans, pumps, etc., furnished with the equipment from the factory. When this equipment is supplied from the factory, the Contractor must supply power circuit(s) to the unit and a disconnecting means. Coordinate with Contractor so that one, and only one, set of starters, fuses, switches, etc., is provided and installed.
 - 3. In general, control and interlock equipment for HVAC systems (including associated wiring, conduit, transformers, relays, contacts, etc.) is furnished under Mechanical Division 23. Contractor shall install and connect all such equipment as necessary.
 - 4. Controls, wiring, conduit, transformers, etc., for smoke, fire, and motor-operated dampers are provided by Mechanical. Electrical shall install and connect all such equipment.
 - B. Architectural Equipment: In general, any electrically operated or controlled equipment furnished under architectural divisions shall be supplied with control wiring, transformers, contacts, etc. Contractor shall provide power circuits to such equipment and install all electrical control equipment related thereto.
 - C. Carefully review the contract documents and coordinate the electrical work under the various Divisions.

1.4 CONTRACTOR QUALIFICATION:

- A. Any Contractor performing work under this Division shall be fully qualified and acceptable to the Engineer. Submit the following evidence for approval:
 - 1. A list of not less than five (5) comparable projects that the Contractor completed.
 - 2. Letters of reference from not less than three (3) registered professional engineers, contractors, or building owners, explaining Contractor proficiency, quality of work, or other attribute on projects of similar size or substance.
 - 3. Local or State license.
 - 4. Membership in trade or professional organization where required.
 - 5. Copy of Master Electrician's License.
- B. Contractor is any individual, partnership, corporation, or firm performing work by Contract or subcontract on this project.

- C. Acceptance of a subcontractor will not relieve the Contractor of any contractual requirements or his responsibility to supervise and coordinate the various trades.
- D. Supervisory Qualifications: The electrical work on the project shall be under the direct supervision of a licensed Master Electrician.
- E. Qualifications of Installers:
 - 1. For the actual fabrication, installation, and testing of the work, the Contractor shall use only thoroughly trained and experienced personnel who are completely familiar with the requirements of this work and with the installation recommendations of the manufacturers of the specified items.
 - 2. The Electrical Installer shall utilize a full time project foreman in charge of all electrical work. This person shall be fully qualified and experienced in such work and shall be available, on site, at all times during Construction. All problems, questions, coordination, etc., relating to electrical work shall take place through this person to the Architect.
- F. Qualifications of Video Tape Technician: For videotaping specified in "Operating Instructions", the Contractor shall provide the services of persons skilled in videotape production and editing.
- 1.5 FIRE SAFE MATERIALS:
 - A. Unless otherwise indicated, materials and equipment shall conform to UL, NFPA, or ASTM Standards for Fire Safety with Smoke and Fire Hazard Rating not exceeding flame spread of 25 and smoke developed of 50.
- 1.6 REFERENCED STANDARDS, CODES, ORDINANCES AND SPECIFICATIONS
 - A. Specifications, Codes and Standards listed below are included as part of this specification, latest edition.

ADA	Americans with Disabilities Act								
ANSI	American National Standards Institute								
ASHRAE	American Society of Heating, Refrigerating and Air Conditioning Engineers								
ASME	American Society of Mechanical Engineers								
ASTM	American Society for Testing and Materials								
IBC	International Building Code								
CABO	Council of American Building Officials								
FM	Factory Mutual								
IEEE	Institute of Electrical and Electronics Engineers								
MOSHA	Marvland Occupational Safety & Health Administration								
NEC	National Electrical Code								

NECA	National Electrical Contractors Association
NEMA	National Electrical Manufacturers Association
NFPA	National Fire Protection Association
OSHA	Occupational Safety & Health Administration
UL	Underwriters Laboratories

- B. All electrical equipment and materials shall comply with the Codes and Standards listed in the latest edition of IEEE Standard 241, *Electric Power Systems in Commercial Buildings*, Chapter 1, Section 1.6, entitled "Codes and Standards".
- C. Comply with all Codes applicable to the work:
 - 1. Bidders shall inform themselves of all local and state codes and regulations.
 - 2. In case of conflict between Contract Documents and governing Codes, the most stringent shall take precedence. Where, in any specific case, different sections of any applicable codes or when Drawings and Specifications specify different materials, methods of Construction, or other requirements, the most restrictive shall govern.
 - 3. Where Contract Documents exceed minimum Code requirements, and are permitted under the Code, the Contract Documents take precedence and shall govern.
 - 4. No extra payment will be allowed for work or changes required by local Code enforcement authorities.
- D. Underwriters Laboratories Labels shall apply to all materials and devices, etc., except specified items not covered by existing UL Standards.
- E. Conflicts with applicable regulations:
 - 1. Resolve at Contractor's expense.
 - 2. Prepare and submit details of alternate construction:
 - a. Acceptable solution of conflict.
 - b. List of substitute materials:

For approval of inspecting authorities.

For approval of Engineer.

F. Comply with all NECA's National Electrical Installation Standards (NEIS), including NECA 1-2000 "Standard Practices for Good Workmanship in Electrical Contracting".

1.7 INTERPRETATION OF DOCUMENTS

- A. Any discrepancies between Drawings, Specifications, Drawings and Specifications, or within Drawing and Specifications shall be promptly brought to the attention of the Owner during the bidding period. No allowance shall subsequently be made to the Contractor by reason of his failure to have brought said discrepancies to the attention of the Owner during the bidding period or of any error on the Contractor's part.
- B. The locations of products shown on Drawings are approximate. The Contractor shall place the devices to eliminate all interference with above-ceiling ducts, piping, etc. Where any doubt exists, the exact location shall be determined by the Owner.

- C. All general trades and existing conditions shall be checked before installing any outlets, power wiring, etc.
- D. Equipment sizes shown on the Drawings are estimated. Before installing any wire or conduit, the Contractor shall obtain the exact equipment requirements and install wire, conduit, or other item of the correct size for the equipment actually installed. However, wire and conduit sizes shown on the Drawings shall be taken as a minimum and shall not be reduced without written approval from the Owner.
- E. Where variances occur between the drawings and specifications or within either document itself, the item or arrangement of better quality, greater quality, or higher cost shall be included in the Contract Price. The Engineer will decide on the item and manner in which the work shall be installed.
- F. Contract Drawings are generally diagrammatic and all offsets, fittings, transitions, and accessories are not necessarily shown. Furnish and install all such items as may be required to fit the work to the conditions encountered. Arrange conduits, equipment, and other work generally as shown on the Contract Drawings, providing proper clearance and access. Where departures are proposed because of field conditions or other causes, prepare and submit detailed Shop Drawings for approval in accordance with "submittals" specified below. The right is reserved to make reasonable changes in location of equipment, piping, and ductwork, up to the time of rough-in or fabrication.
- G. Work not specifically outlined, but reasonably incidental to the completion of the work, shall be included without additional compensation from the Owner.

PART 2 - PRODUCTS

2.1 MATERIALS AND EQUIPMENT

- A. Material and equipment installed as a part of the permanent installation shall be new, unless otherwise indicated or specified, and shall be approved by the Underwriters' Laboratories, Inc., for installation in each particular case where standards have been established.
- B. Where material or equipment is identified by proprietary name, model number, and/or manufacturer, furnish the named item or equivalent thereof, subject to acceptance.
- C. Material submissions shall conform to requirements outlined in SUBMITTALS, REVIEW, AND ACCEPTANCE.
- D. The suitability of named item only has been verified. Where more than one Manufacturer is named, only the first named Manufacturer has been verified as suitable alternate. Manufacturers and items other than the first named shall be equal or better in quality and performance to that of specified items, and must be suitable for available space, required arrangement, and application. Submit all data necessary to determine suitability of alternate manufacturers for review. Provide a list company proposed and specified products and performance on the first page of the submittal. Failure to clearly identify differences will result in the submittal being returned as "Revise and Resubmit". The Contractor, by providing other than the first named Manufacturer, assumes responsibility for all necessary adjustments and modifications necessary for a satisfactory installation.
- E. The Contractor shall only submit those manufacturers indicated in the Specification. Proposed manufacturers other than those indicated will not be considered unless the specific item indicates "or as approved equal". Submit all data necessary to determine suitability of substituted items for approval. Failure to do so will result in a "Revise and Resubmit" response.

F. All items of equipment furnished shall have a service record of at least five (5) years.

2.2 SUBSTITUTIONS

- A. Substituted items or items other than those named shall be equal or better in quality and performance and must be suitable for the available space, required arrangement, and application. Submit any and all data necessary to determine the suitability of substituted items. The Contractor shall be responsible for correct application, placement, and installation of substituted equipment. Cost savings data shall also be submitted with submittal data for substituted items. Total cost savings or a per-unit saving to the Owner shall be clearly indicated. If a substituted item is accepted, all cost savings shall be returned to the Owner as a credit.
- B. Substitutions will not be permitted for specific items of material or equipment where specifically indicated.
- C. For substituted items, clearly list on the first page of the submittal all differences between the specified item and the proposed item. The Contractor shall be responsible for corrective action (or replacement with the specified item) while maintaining the specification requirements if differences have not been clearly indicated in the submittal.
- D. Where the Contractor proposes to use an item of equipment or application other than that specified or detailed on the Drawings, which requires any redesign of the structure, partitions, foundation, HVAC, piping, wiring, or any other part of the mechanical, electrical, or architectural layout, all such redesign and all new drawings and detailing required thereafter shall be prepared by the Contractor at his own expense for review by the Owner representative before any such work is implemented.
- E. All Contractor-proposed changes and revisions shall be at the Contractor's risk and expense. The Contractor shall fully coordinate all revisions, substitutions and changes with other trades. The Contractor shall provide all necessary provisions, including HVAC, ventilation, foundations, access, etc., for a complete, code compliant, and fully functional installation.
- F. Where the Contractor elects to submit a substitution for equipment or materials, he shall:
 - 1. Submit Shop Drawings that show complete compliance to each statement or requirement of the Specifications.
 - 2. Submit certified test data from an independent testing laboratory for each product.
 - 3. Submit one complete working sample of the equipment or materials to be furnished. In cases involving large or heavy items of equipment, the Owner may waive the requirement to submit the sample.
- G. Failure to comply with the above-required submissions shall constitute an automatic rejection of the substitution.

2.3 SUBMITTALS, REVIEW, AND ACCEPTANCE

- A. General:
 - 1. The equipment, material, installation, workmanship, arrangement of work, final instruction, and final documentation is subject to review and acceptance. No substitution will be permitted after acceptance of equipment or materials except where such substitution is considered by the Engineer to be in the best interest of the Owner. Submit for review in clear and legible form the following documents:
 - a. Material and Equipment List
 - b. Descriptive Data

- c. Shop Drawings
- d. Installation and Coordination Drawings
- e. Contractor As-Built Drawings
- f. Owner Instructions and Manuals
- g. Construction Phasing and Outage Schedule
- 2. Prepare all submittals specifically for this project and stamp each submittal in a form indicating that the documents have been Contractor reviewed, are complete, and are in compliance with the requirements of the plans and specifications. Each submittal item shall be clearly identified and numbered. Each submittal shall contain a complete schedule of Manufacturer's part numbers and quantity listings of all supplied components. Each proposed item shall be highlighted and tagged with a star, an arrow, etc., including all options and accessories.
- 3. Coordinate the installation requirements and any mechanical requirements for the equipment submitted. Submittals will be reviewed for general compliance with design concept in accordance with the contract documents. The Contractor is responsible for the correctness of all submittals. Reviews will not verify dimensions, quantities, or other details.
- 4. Identify all submittals, indicating the intended application, location, or service of the submitted item. Refer to specification sections or paragraphs where applicable. Clearly indicate the exact type, model number, size, and special features of the proposed item. Clearly list on the first page of the Submittal all differences between the specified item and the proposed item. The Contractor shall be responsible for corrective action (or replacement with the specified item) while maintaining the specification requirements, if differences have not been clearly indicated in the submittal. Submittals of a general nature will not be acceptable.
- 5. Submit actual operating conditions or characteristics for all equipment where required capacities are indicated. Factory order forms showing only required capacities will not be acceptable. Indicate all options used to meet the specifications. It is not the responsibility of the Engineer or Owner to make selections of factory options other than colors. Submittals lacking proper selection of factory options or special features required by the specification shall be RETURNED WITHOUT REVIEW.
- 6. Acceptance will not constitute waiver of contract requirements unless deviations are specifically indicated and clearly noted.
- 7. Documents of general form indicating options shall be clearly marked to show what is specifically proposed for this project.
- 8. Submittals NOT IN COMPLIANCE with the requirements of this section will be RETURNED WITHOUT REVIEW.
- B. Material, Equipment, Manufacturer and Subcontractor List: Within 30 calendar days after the award of contract, submit a complete MATERIAL, EQUIPMENT, MANUFACTURER AND SUBCONTRACTOR LIST for preliminary review. List all proposed materials and equipment, the associated proposed Manufacturer, and any proposed subcontractors. After the receipt of reviewed Material and Equipment List, submit complete Shop Drawings for approval. List all materials and equipment, indicating manufacturer, type, class, model, curves, and other general identifying information. Submittals shall be specific for each building as contained in the individual building Specifications and Drawings.
- C. Upon approval of the List of Materials, the Contractor shall prepare a complete Master Submittal Register, listing all products and materials that will be submitted for approval. Items shall be listed by referenced specification paragraph in ascending order. This master list shall be included with each submittal, updated to reflect the status of approval for each item, and shall highlight the items pertaining to the submittal. A suggested Submittal Register Format is shown below:

SUBMITTAL REGISTER									
Item/Material	Ref'd Specified Spec. or Paragraph Substitute		Submittal Date	Status	Remarks				

- D. No Shop Drawing Submittals will be considered for approval until the complete List of Subcontractors and the complete List of Materials/Manufacturers and Equipment have been approved.
- E. Descriptive Data: After acceptance of the MATERIAL and EQUIPMENT LIST, submit additional DESCRIPTIVE DATA for all items. Data shall consist of specifications, data sheets, samples, capacity ratings, performance curves, operating characteristics, catalog cuts, dimensional drawings, installation instructions, and any other information necessary to indicate complete compliance with the contract documents. Where several ratings or sizes are shown or available, clearly indicate the exact size or rating relating to the particular device being proposed.
- F. Submit complete descriptive data for all items. Data shall consist of Specifications, data sheets, samples, capacity ratings, performance curves, operating characteristics, catalog cuts, dimensional drawings, wiring diagrams, specific electrical/wiring requirements and connections including control and interlock wiring, installation instructions, and any other information necessary to indicate complete compliance with the Contract Documents. Edit submittal data specifically for application to this project.
- G. Shop Drawings shall be submitted and approved for all materials and equipment prior to installation. If any material and/or equipment is installed prior to receipt by the Contractor of approved Shop Drawings, the Contractor is liable for its replacement at no additional cost to the Owner.
- H. Data submitted shall include information on all materials and equipment to demonstrate compliance with the Contract Drawings and Specifications. Where installation procedures or any part thereof are required to be in accordance with manufacturer's recommendations, furnish printed copies of the recommendations prior to installation. Installation of the item shall not proceed until recommendations are received. Failure to furnish recommendations shall be cause for rejection of the equipment or material.
- I. Any deviation of submitted material or equipment from the Contract Drawings or Specifications shall be clearly marked in red ink on Submittals, and itemized in a transmittal letter, in order to receive consideration for approval.
- J. Approval of material or equipment submittals containing deviations not specifically identified by Contractor shall not relieve the Contractor from compliance with specified requirements.
- K. All major items of mechanical equipment shall be the latest standard catalog products of reputable manufacturers. Where two (2) or more items of the same kind of equipment are required, they shall be the products of a single manufacturer.

- L. Thoroughly review and stamp all submittals to indicate compliance with Contract requirements prior to submission. Coordinate installation requirements and any electrical requirements for equipment submitted. Contractor shall be responsible for correctness of all submittals.
- M. Submittals will be reviewed for general compliance with design concept in accordance with Contract Documents, but dimensions, quantities, or other details will not be verified.
- N. Increase, by the quantity listed below, the number of electrical related Shop Drawings, product data, and samples submitted, to allow for required distribution plus two copies of each submittal required, which will be retained by the Electrical Consulting Engineer.
 - 1. Shop Drawings Initial Submittal: 1 additional blue- or black-line print.
 - 2. Shop Drawings Final Submittal: 1 additional blue- or black-line print.
 - 3. Product Data: 1 additional copy of each item.
- O. Additional copies may be required by individual sections of these Specifications.
- P. Shop Drawings:
 - 1. Prepare and submit SHOP DRAWINGS AND/OR DIAGRAMS for all specially fabricated items, modifications to standard items, specially designed systems where detailed design is not shown on the contract drawings, or where the proposed installation differs from that shown on the contract drawings.
 - 2. Shop drawings shall include plans, elevations, sections, mounting details of component parts, point to point interconnection diagrams, elementary diagrams, single line diagrams, and any other drawings necessary to show the fabrication and connection of the complete item or system.
 - 3. Shop drawings shall be provided for, but not limited to the following items:

Access Doors Ballasts **Basic Electrical Materials** Cable - 600 volt Cable Tray **Circuit Breakers** Conduit Contractor and Subcontractor Qualifications Controllers & Control Devices Disconnects **Electrical Connection Coordination Schedule Equipment Connections** Fire Alarm Systems Firestopping Fuses Identification System Lamps Lighting Control Equipment Lighting Fixtures Low Voltage Fuses Motor Starters Receptacles Safetv Switches Schedule of Values Sleeves, Hangers, Supports Tests and Reports Wiring Devices

Wiring Diagrams

- Q. The Contractor, additionally, shall submit for approval any other shop drawings as required by the Architect. No item listed above shall be delivered to the site, or installed, until approved. After the proposed materials have been approved, no substitution will be permitted except where approved by the Engineer.
- R. The Contractor shall prepare and submit a Detail Schedule of Values indicating the Contract costs for the major work items. The Contractor shall provide additional detail and information as requested by the Engineer.
- S. The Contractor shall prepare and submit a complete Submittal Schedule. The Schedule shall include a listing of all Submittals, Shop Drawings, and Coordination Drawings.

2.4 COORDINATION DRAWINGS:

- A. Prepare, submit, and use composite installation and coordination drawings to assure proper coordination and installation of the work. Drawings shall include, but not be limited to the following:
 - 1. Electrical Rooms indicating switchboard assemblies, transformers, equipment pads, panels, etc.
 - 2. Mechanical Equipment Rooms, including panels, transformers, starters, equipment, etc.
- B. Draw plans to a scale not less than 1/4 inch equals one foot. Include plans of the proposed work, showing all equipment, major elements, conduit, and wiring in the areas involved. Fully dimension all work, horizontally and vertically. Show coordination with other work including piping, ductwork and other mechanical work, walls, doors, ceilings, columns, beams, joists, and other architectural and structural work.
- C. Identify all equipment and devices on wiring diagrams. Where field connections are shown to factory-wired terminals, furnish manufacturer's literature showing internal wiring.
- D. Prepare, submit, and use scaled layout drawings indicating dimensions, clearances, and actual equipment dimensions. Layout drawing shall include, but not be limited to the following:
 - 1. Pad-mounted equipment and equipment connections.
 - 2. Underground conduits, ductbanks, manholes, handholes, and building penetrations.

2.5 RECORD DRAWINGS:

- A. As the work progresses, record on a set of white prints the installed locations, sizes of electric feeders, equipment, etc. Upon completion of the work, submit one (1) complete set of white prints with "As-Built" information neatly recorded thereon in red ink. Use other colors to distinguish between variations in separate categories of the work. Note related change-order numbers where applicable.
- B. Write step-by-step detailed instructions for turn-on, turn-off, seasonal changeover, and periodic checks of all systems and equipment. Include all precautions and warnings.
- C. Prepare a list of the manufacturers of all major equipment, their local service representative and procedures for obtaining service.
- D. Post one (1) copy of all instructions, lists, charts, and diagrams at the equipment or where indicated, mounted under glass or approved plastic cover.

- E. Furnish to the Owner two (2) copies of the Manufacturer's installation and operations instructions. Include replacement parts lists where applicable. Also include copies of all posted instructions, lists and charts. Assemble the material in one or more heavy duty 8- 1/2" x 11" loose leaf binders with tab separators. Submit for approval before final delivery. Binder shall be labeled on spine and on cover with Project Name.
- F. Deliver all instruction materials to the Owner prior to the formal instruction period.
- G. Deliver two (2) complete sets of all approved submittals to the Owner for filing.
- H. Prepare record documents in accordance with the requirements in the specifications. In addition to the requirements specified, indicate installed conditions for:
 - 1. Major raceway systems, size and location, for both exterior and interior; locations of control devices; distribution and branch electrical circuitry; and circuit breaker size and arrangements.
 - 2. Equipment locations (exposed and concealed), dimensioned from prominent building lines.
 - 3. Approved Substitutions, Contract Modifications, and actual equipment and materials installed.
- I. The Contractor shall keep at the site at all times during construction, one set of up-to-date Contract prints for the express purpose of showing any and all changes made during construction. The Contractor shall make the prints showing each change and shall incorporate all changes in "Record/As-Built Drawings" to be submitted to the Engineer upon completion of the project.
- J. The Contractor shall show proof of up-to-date record drawings to the Owner prior to submitting monthly invoice.
- K. The Contractor shall conform to all drawings, including all revisions, addendums, alternates, change orders, deletions, existing conditions, and as-built conditions without extra cost to the Owner.

2.6 DEMONSTRATION AND OPERATING INSTRUCTIONS

- A. Furnish the necessary technicians, skilled workers, and helpers to operate the electrical systems and equipment of the entire project. The Contractor shall provide a minimum of eight (8) hours of system demonstration and eight (8) hours of system operation for each system.
- B. Where specified in technical sections, provide longer periods required for specialized equipment.
- C. Contractor shall provide start-up of all systems in an orderly, organized, and coordinated manner to ensure that all systems are functioning as designed. The Contractor shall provide a detailed start-up, testing, and demonstration plan for all systems in a coordinated manner that is documented in writing at least 45 days prior to system start-up. Start-up, testing and demonstration plans shall include detailed point-by-point checklists that clearly show that systems are, in fact, functioning as designed. Instruct the Owner or designated personnel in operation, maintenance, lubrication, and adjustment of systems and equipment.
- D. The Operating and Maintenance Manual shall be available at the time of the instructions, for use by Instructors and Owner personnel.
- E. Videotape each instruction session, including both the sessions specified above and added sessions required in technical sections for specialized equipment. Provide one complete set of DVD video disks with each Operating and Maintenance Manual.

F. Schedule the general and specialized instruction periods for a time agreed upon by he Owner and Engineer. All operation training and demonstrations shall be complete prior to Owner acceptance of any given system.

PART 3 - EXECUTION

3.1 EXAMINATION OF SITE, SURVEYS, AND MEASUREMENTS:

- A. Examine the site, determine all conditions and circumstances under which the work must be performed, and make all necessary allowances for same. No additional cost to the Owner shall be permitted for Contractor's failure to do so.
- B. Examine the site and observe the conditions under which the work will be done or other circumstances which will affect the contemplated work. No allowance will be made subsequently in this connection for any error or negligence on the Contractor's part.
- C. The Contractor shall base all measurements, both horizontal and vertical, from established benchmarks. All work shall agree with these established lines and levels. Verify all measurements at the site and check the correctness of same as related to the work.
- D. Any discovery of discrepancy between actual measurements and those indicated which prevents following good practice or the intent of the Drawings and Specifications shall be brought to the attention of the Owner's Representative. Work shall not proceed until receiving instructions from the Owner's Representative.
- E. The Contractor shall follow Drawings in laying out the work and check Drawings of other trades to verify spaces in which work will be installed. Maintain maximum headroom and space conditions at all points. Where headroom or space conditions appear inadequate, the Owner's Representative shall be notified before proceeding with the installation.
- F. To prevent conflict with the work of other trades and for proper execution of the work, the Contractor, as directed by the Owner's Representative, shall make the necessary modifications in the layout as needed, at no extra charge to the Owner.
- G. The Contractor shall be solely responsible for the proper arrangement of his conduit and equipment.
- H. The Engineer shall make all final decisions as to any conditions that require the changing of any work.
- I. The Contractor shall have competent supervision on the site at all times to lay out, check, coordinate, and supervise the installation of all electrical work and be responsible for the accuracy thereof. He shall plan the installation of all electrical work, giving consideration to the work of other trades, to prevent interference.
- J. The Contractor shall determine the location, size, etc., of all chases, sleeve openings, etc., required for the proper installation of the electrical work and see that such are provided. All chases, sleeves, openings, etc., shall be set prior to erection of new work to prevent delay in the progress of other work or trades.
- K. Conditions and/or situations that prevent the proper installation of any equipment or item where shown on the Drawings shall be called to the attention of the Engineer for instructions.
- L. The Contractor shall have equipment shipped or fabricated in sections of suitable size for entering the building and being removed from the finished building in the future, if necessary.

- M. The Contractor shall fully investigate all peculiarities and space limitations for all materials and equipment.
- N. Outlet, pull, and junction boxes and other appliances that require operation, examination, adjustment, servicing or maintenance shall be readily accessible.
- O. The Contractor shall take all field measurements necessary for this work and shall assume responsibility for their accuracy.
- P. The Contractor shall coordinate the electrical work with all other sub-contractors. All work shall be so arranged that there will be no delay in the proper installation and completion of any part or parts of electrical equipment. All electrical work shall be installed in proper sequence with other trades without any unnecessary delay.
- Q. The Drawings are to some extent diagrammatic and indicate the general arrangement of the equipment, the runs of conduit, and the manner of connection.
- R. The Contractor shall confer with all sub-contractors engaged in the construction of the project, regarding the work that may, in any way, affect his installation. Whenever interference occurs, before installing any of the work in question, the Contractor shall consult with all sub-contractors and shall come to an agreement with them as to the exact location and level of his conduit parts of his equipment.
- S. The Contractor shall be responsible for determining exact property lines and area of work. The Contractor shall not install any equipment or conduits outside of the property lines and/or area of work without written direction from the Owner. Any work indicated diagrammatically on the Contract Documents to be installed beyond the property lines and/or area of work shall be verified with the Owner prior to installation.

3.2 GENERAL RESPONSIBILITIES:

- A. The Contractor shall be responsible for systems and related damages possible, and shall hold harmless the Owner, the Architect and his consultants from malfunction of systems and equipment installed under this Contract as defined in the laws of the State of Maryland pertaining to real property for the period of time as defined by such laws.
- B. It is the intent of these Specifications to fully cover without exception all required labor and materials so that the finished work will be delivered to the Owner in a complete and satisfactory working installation. Excavation, wiring, distribution, etc., shall be performed in compliance with the Contract Documents.
- C. Work not specifically outlined, but reasonably incidental to the completion of the work, shall be included without additional compensation from the Owner.
- D. Conflicting points in the Specifications or on the Drawings shall be called to the attention of the Architect prior to the execution of the Contract.

3.3 STORAGE AND PROTECTION OF EQUIPMENT

A. <u>All</u> electrical equipment to be used in the construction shall be properly stored and protected against the elements. All equipment shall be stored under cover, and shall not be stored at the construction site on the ground, in mud, water, snow, rain, sleet or dust. Large diameter cables may be stored on reels with weatherproof materials. Such weatherproof materials shall be heavy-duty, securely fastened and made impervious to the elements.

- B. Conventional electrical construction materials such as building wire, outlet and junction boxes, wiring devices, conduit, lighting fixtures, fittings, etc., shall be stored in construction buildings, covered trailers or portable covered warehouses. Any equipment subject to damage or corrosion from excessive moisture shall be stored in dry, heated areas. Any equipment containing plastic or material subject to damage caused by excessive heat or sunlight shall be stored to prevent such damage. This includes plastic ducts and lenses.
- C. Equipment damaged as a result of the above conditions shall be properly repaired at the Contractor's expense or shall be replaced at the Contractor's expense, if, in the opinion of the Engineer the equipment has been damaged to such an extent it cannot operate properly after repairs are made.
- D. All electrical enclosures exposed to construction damages such as paint spots, spackling or plaster spatter, grout splashes, waterproofing compound, tar spots or runs and pipe covering compound splashes, shall be completely covered and protected against damage.
- E. In the event leakage into the building of any foreign material or fluid occurs or may occur, the Contractor shall take all steps as described above to protect any and all equipment.
- F. After connections to electrical equipment are complete and the equipment is ready for operation, all construction debris shall be removed from all enclosures. Such debris includes dust, dirt, wire clippings, tape and insulation removed in order to make the connection.

3.4 ELECTRICAL INSTALLATIONS

- A. General: Sequence, coordinate, and integrate the various elements of electrical systems, materials, and equipment. Comply with the following requirements:
 - 1. Coordinate electrical systems, equipment, materials, and installation with landscape/irrigation contractor(s).
 - 2. Verify all dimensions by field measurements.
 - 3. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings, to greatest extent possible. Conform to arrangements indicated by the Contract Documents, recognizing that portions of the Work are shown only in diagrammatic form. Where coordination requirements conflict with individual system requirements, refer conflict to the Engineer.
 - 4. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components where installed exposed in finished spaces.
 - 5. Install electrical equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. As much as practical, connect equipment for ease of disconnecting, with minimum of interference with other installations. All equipment and disconnects shall maintain proper working space to conform to NEC.
 - 6. Install systems, materials, and equipment giving right-of-way priority to systems that require installation at a specified slope.
 - 7. Arrange for chases, slots and openings in other building components during progress of construction, to allow for electrical installation.
 - 8. Space, coordinate, and integrate installations of electrical materials and equipment for efficient flow of the work.

3.5 SUPERVISION AND COORDINATION:

A. Provide complete supervision, direction, scheduling and coordination of all work under the contract, including that of subcontractors, using full attention and the best skill. Be responsible for all work and make all subcontractors, suppliers and manufacturers fully aware of all requirements of the contract.

- B. Coordinate the rough-in of all work performed under Divisions 23 and 26.
- C. The Contractor shall coordinate all electrical rough-ins with approved shop drawings and coordination drawings. Any rough-in installed without complete coordination shall be at the Contractor's risk and expense.
- D. Coordinate the installation of all necessary rough-in of work, sleeves, anchors and supports for conduit, wiring, and other work performed under Divisions 23 and 26.
- E. Coordinate the spacing and arrangement of lighting fixtures, diffusers, grilles and access panels in ceilings to establish a symmetrical pattern.
- F. Where a discrepancy exists within the Specifications or drawings or between the Specifications and Drawings, the more stringent (or costly) requirement shall apply until a clarification can be obtained from the Engineer. Failure to clarify such discrepancies with the Engineer will not relieve the Contractor of the responsibility of conforming to the requirements of the Contract.
- G. Failure of the Contractor to obtain a full and complete set of Contract Documents (either before or after bidding) will not relieve the Contractor of the responsibility of complying with the intent of the Contract Documents.
- H. To insure proper electrical coordination between the electrical components supplied under Division 26 and the equipment supplied under Division 23, a schedule shall be submitted, prior to start of work, for review by the Engineer with the following column headings:

1.Equi p. or	2. HP or KVA	3. FLA	4.Voltag e and	5. Power	6. Capacitor	7.Moto r	8.Disc on.	9.Contr ols	10.Rem arks
Item			Phase	Factor		Starter			

Description of Column Headings:

- 1. List all the approved equipment furnished under Division 23 that requires electrical connections and designate the equipment as it appears in Division 23. Indicate the quantity, if more than one, in parentheses of identical equipment being supplied.
- 2. Indicate the supplied horsepower of the equipment listed under Column No. 1. If equipment listed has more than one motor, indicate each motor and its respective horsepower. Indicate the kVA rating for all other equipment requiring an electrical connection, unless the electrical connection is for a control circuit only.
- 3. Indicate the full load amperes (FLA) for equipment listed under Column No. 1.
- 4. Indicate the voltage and phase requirements for equipment listed under Column No. 1. If more than one electrical circuit or voltage is required for the listed equipment, it shall be so indicated. Indicate wiring required for connection, including all phase, neutral, and ground conductors.
- 5. Indicate the power factor rating for all motors listed under Column No. 2.
- 6. Where a capacitor is to be provided, indicate specification division it is supplied under and indicate the KVAR size for any capacitor provided under Division 26.
- 7. Where a motor starter is required, indicate the specification division it is supplied under and the type of motor starter; across-the-line, reversible, variable speed, two speed-single winding, etc. Indicate In Column No. 9 if the motor starter provided under Division 26 is not compatible with the motor specified.

- 8. Where a disconnect switch is required by the National Electric Code or by the contract documents for the equipment listed under Column No. 1, indicate under which Division the disconnect switch is supplied.
- 9. Indicate the Division under which the controls for the equipment listed under Column No. 1 are provided.
- 10. Indicate any discrepancies between what is indicated in the contract documents and what is actually being provided.
- I. The Contractor shall fully coordinate the electrical connections to all equipment prior to installations, with the approved Shop Drawings and the trades involved. Coordination shall include voltage, phases, quantity and size of wiring, device sizes, terminations, rough-in work, and other coordination for a complete installation.
- J. Coordinate Division 26 work with all trades.
- K. Install work with proper clearances and access. Carefully examine all contract drawings and fit the work in each location without substantial alteration. Where departures are proposed or required, submit detailed drawings for acceptance. The right is reserved to make reasonable changes in location of equipment, conduit and wiring up to the time of rough-in or fabrication.
- L. Coordinate light switch locations with door swings prior to rough-in. No switches permitted behind doors.
- M. Coordinate electrical work with architectural items and equipment.
- N. This Contractor shall make all system connections required to equipment furnished and installed under other divisions. Connections shall be complete in all respects to render this equipment functional to its fullest intent. The Contractor shall make all system connections required to equipment furnished under other Divisions. Circuits shall be extended to all equipment which is incidental to, but not necessarily shown, for equipment specified under other divisions such as magnetic flow meters, ATC panels, liquid level controls, leak detection systems, etc. Connections shall be complete in all respects to render this equipment functional to its fullest extent.
- O. It shall be the responsibility of the Contractor to obtain complete instructions for connections.

3.6 GUARANTEE:

- A. Guarantee obligations shall be as hereinbefore specified in the GENERAL AND SPECIAL CONDITIONS of these specifications, except as follows:
 - 1. Guarantee the complete electrical system free from all mechanical and electrical defects for the period of two (2) years beginning from the day of final acceptance of the work by the Owner.
 - 2. Also, during the guarantee period, be responsible for the proper adjustments of all systems, equipment and apparatus installed by the Contractor and do all work necessary to ensure efficient and proper functioning of the systems and equipment.
 - 3. Upon receipt of notice from the Owner of failure of any part of the electrical installation during the guarantee period, new replacement parts shall be furnished and installed promptly at no cost.
 - 4. Warranty From the Manufacturer: Contractor shall obtain all warranty papers and records from the Original Equipment Manufacturer according to their warranty policy and deliver the same to the Owner. Contractor shall fulfill all the Original Manufacturer's requirements to validate the warranty as offered by the Original Equipment Manufacturer.
- B. Provide 24-hour service for any and all warranty problems experience in the operation of the equipment provided.

- C. Any equipment or system in need of warranty work whether during regular hours or on an emergency basis, shall be immediately serviced and repaired. The warranty work and guarantee shall include all parts and labor and shall be furnished at no cost to the Owner.
- D. The Contractor shall guarantee to make good any and all defects in his work, exclusive of lamps, which may develop due to defective workmanship or materials, within one year from the date of final acceptance of the work by the Owner.
- E. In addition to the warranty and correction of work obligations contained in the General and supplementary Conditions, correct the work of the system as embraced by the Specification, free from Mechanical and Electrical defects for the warranty period beginning from the day of acceptance of the building by the Architect for the beneficial use of the Owner.
- F. During the warranty period, take responsibility for the proper adjustments of systems, equipment and apparatus installed and perform work necessary to ensure the efficient and proper functioning of the systems and equipment.
- G. Certain items of equipment hereinafter specified shall be guaranteed for a longer time than the general warranty period. These guarantees shall be strictly adhered to and the Contractor shall be responsible for service or replacement required in connection with guarantee of these items. These guarantees shall commence on the same date as the final acceptance by the Architect.
- H. Submission of a bid proposal for this Project warrants that the Contractor has reviewed the Contract Documents and has found them free from ambiguities and sufficient for the construction and proper operation of systems installed for this project. If discrepancies are found, have them clarified by Addendum.
- I. It is possible that certain areas of the building or certain systems will be accepted at a time different than as specified. The date of acceptance by the Architect for beneficial use of the Owner for these building areas or systems will be adjusted accordingly.
- 3.7 SCHEDULING OF WORK:
 - A. The Contractor shall not be permitted to do any work in any area of any occupied building during normal hours, except in areas specifically assigned.
 - B. Coordination of work by the Contractor is essential such that power outages are kept to a minimum in quantity and duration. All required outages shall be approved by the Owner for optimum time scheduling. Written notice of not less than 15 calendar days shall precede all power outages.
- 3.8 TEMPORARY FACILITIES:
 - A. General: Refer to the Division 1 Sections for general requirements on temporary facilities.
 - B. Description: Furnish and install the necessary metering and distribution equipment or an adequate, 3-phase, 4 wire temporary service and all temporary wiring, including step-down or step-up dry-type transformers. Exact requirements for temporary service will be determined by the Contractor. Coordinate with MCPS for utilization of the building electrical distribution system for construction purposes.
 - C. The Contractor's attention is directed to the Occupational Safety and Health Act, Americans with Disabilities Act and NEC requirements for electrical work on construction sites.
 - D. Installation: Temporary lighting shall provide minimum 10 foot candle levels for construction.

- E. The Contractor shall pay for all material and labor to provide and maintain temporary service.
- F. The Contractor shall obtain and the Owner shall pay for temporary electrical service for construction power.
- G. Remove all temporary power installations and connections after permanent power is established and/or prior to completion of the project.

3.9 DEMONSTRATION:

A. As a part of this contract, the Contractor shall provide for the services of equipment manufacturers or their established representatives to demonstrate to selected maintenance personnel the correct operation, safety and maintenance of all electrical equipment under this contract.

3.10 PAINTING AND FINISHES:

- A. Provide protective finishes on all materials and equipment. Use coated or corrosion-resistant materials, hardware and fittings throughout the work. Paint bare, untreated ferrous surfaces with rust-inhibiting paint. All exterior components including supports, hangers, nuts, bolts, washers, vibration isolators, etc., shall be galvanized or stainless steel.
- B. Clean surfaces prior to application of coatings, paint, or other finishes.
- C. Provide factory-applied finishes where specified. Unless otherwise indicated factory-applied paints shall be baked enamel with proper pre-treatment.
- D. Protect all finishes and restore any finishes damaged as a result of work under Division 26 to their original condition.
- E. The preceding requirements apply to all work, whether exposed or concealed.
- F. Remove all construction marking and writing from exposed equipment, conduit, and building surfaces. Do not paint manufacturer's labels or tags.
- G. All exposed conduit, etc., shall be painted, except in electrical rooms, mechanical rooms, storage rooms, and crawl spaces. Colors shall be selected by the Architect and conform to ANSI Standards.
- H. Submit color of factory-finished equipment for approval prior to ordering.

3.11 PROTECTION OF WORK:

- A. Protect work, material and equipment from weather and construction operations before and after installation. Properly store and handle all materials and equipment.
- B. Cover temporary openings in conduit and equipment to prevent the entrance of water, dirt, debris, or other foreign matter.
- C. Cover or otherwise protect all finishes.
- D. Replace damaged materials, devices, finishes and equipment.
- 3.12 OPERATION OF EQUIPMENT:

- A. Clean all systems and equipment prior to initial operation for testing, retesting, or other purposes. Set, adjust, and test all equipment in accordance with manufacturer's instructions. Do not operate equipment unless all proper safety devices or controls are operational. Provide all maintenance and service for equipment that is authorized for operation during construction.
- B. Where specified, or otherwise required, provide the services of the manufacturer's factory-trained servicemen or technicians to start up the equipment.
- C. Do not use electrical systems for temporary services during construction unless authorized in writing by the Owner. Where such authorization is granted, temporary use of equipment shall in <u>no way</u> limit or otherwise affect warranties or guaranty period of the work.
- D. Upon completion of work, clean and restore all equipment to new conditions; replace expendable items such as filters.

3.13 TESTING AND ADJUSTMENT

- A. Perform all tests which are specified or required to demonstrate that the work is installed and operating properly. Where formal tests are required, give proper notices and perform all necessary preliminary tests to assure that the work is complete and ready for final test.
- B. Adjust all systems, equipment and controls to operate in a safe, efficient and stable manner.
- C. On all circuits, 600 volts or less, provide circuits that are free from ground faults, short circuits and open circuits.
- D. Other tests of a specific nature for special equipment shall be as specified under the respective equipment.

3.14 IDENTIFICATIONS, ELECTRICAL DIAGRAMS AND OPERATING INSTRUCTIONS:

- A. Contractor shall submit for approval schematic diagrams of each electrical system installed in the building. Diagrams shall indicate device location, service, type, make, model number and the identification number of each device in the particular system. Following approval by all authorities, the diagrams shall be framed, mounted under glass and hung in each Main Equipment Room where directed. Contractor shall deliver the tracing or sepia from which the diagrams were reproduced to the Owner.
- B. All equipment shall be plainly tagged.
- C. All items of equipment, including motor starters, panels, etc., shall be furnished with white letters and numbers on black plastic identification plates or aluminum letters and numbers on black engraved aluminum identification plates. Lettering shall be a minimum of 1/4" high. Identification plates shall be securely affixed to each piece of equipment, starters, panels, etc., by screws or adhesive (Tuff-Bond #TB2 or as approved equal). Pressure sensitive tape backing is prohibited.
- D. Provide three (3) copies of operating and maintenance instructions for all principal items of equipment furnished. This material shall be bound as a volume of the "Record and Information Booklet" as hereinafter specified.
- E. Provide at least 24 hours of straight time instruction to the operating personnel. This instruction period shall consist of not less than three (3) consecutive 8-hour days. Time of instruction shall be designated by the Owner. Provide two DVD video disks of all instructional periods/demonstrations.
- 3.15 RECORD DRAWINGS AND SPECIFICATIONS:

Rosa Parks MS – Generator and Electrical Upgrade ©2023 Alban Engineering, Inc.

- A. Upon completion of the Electrical installations, the Contractor shall deliver to the Engineer one complete set of prints of the Electrical Contract Drawings which shall be legibly marked in red pencil to show all Addenda, approved Shop Drawings, Change Orders, changes and departures of the installation as compared with the original design. They shall be suitable for use in preparation of Record Drawings.
- B. The Contractor shall provide a record specification including all Addenda and other modifications. Record substantial variations in actual work performed. Identify all substitutions.

3.16 RECORD AND INFORMATION BOOKLET:

- A. The Contractor shall have prepared three (3) copies of the Record and Information Booklet and deliver these copies of the booklet to the Owner. The booklet shall be as specified herein. The booklet must be approved and will not be accepted as final until so stamped.
- B. The booklet shall be bound in a three-ring loose-leaf binder similar to "National" No. 3881 with the following title lettered on the front and on the spine of the binder: "Record and Information Booklet (insert name of the project)". No sheets larger than 8-1/2" x 11" shall be used, except sheets that may be neatly folded to 8-1/2" x 11" and used as a pull-out. An Index will include the section tabs for each subject included. If more than one binder is required, print covers and spines with Volume numbers. Include in the front of every binder an index to all binders.
 - 1. Internally subdivide the binder contents with permanent page dividers, logically organized as described below; with tab titling clearly printed under reinforced laminated plastic tabs.
 - 2. Contents: Prepare a Table of Contents for each volume, with each product or system description identified, typed on white paper.
 - 3. Part 1: Directory, listing names, addresses, and telephone numbers of Electrical Engineers; Contractor; Electrical Subcontractors; and major Electrical equipment suppliers. Provide sales and service representative names and phone numbers of all equipment.
 - 4. Part 2: Operation and Maintenance Instructions, arranged by Specification Section. For each category, identify names, addresses, and telephone numbers of Subcontractors and suppliers. Identify the following:
 - a. Significant design criteria.
 - b. List of equipment. Complete record of material list. Catalog brochures and product data for all components. Include all submittal comments, and corrected catalog data and shop drawings on each piece of equipment and each system.
 - c. Parts list for each component, including recommended spare parts list. Include motor starter overload schedules.
 - d. Operating instructions, including sequence of operation.
 - 1) Description of function, normal operating characteristics and limitations, engineering data and tests, and complete nomenclature and commercial numbers of replacement parts. Provide a description of each system installed.
 - 2) Manufacturer's printed operating procedures to include start-up, break-in, and routine and normal operating instructions; control, stopping.
 - e. Maintenance instructions for equipment and systems. Detailed checkout procedures to insure operation of systems and gear, including recommended cleaning methods and materials and special precautions identifying detrimental agents.
 - f. Servicing, diagnostic and troubleshooting instructions and procedures for systems and major equipment.
 - g. Recommended preventative maintenance program, including a list of items requiring inspection and servicing. Provide Chart Form indicating time and type of routine and preventative maintenance of electrical equipment, etc. The chart shall also indicate tag number, model number of equipment, location and service.

- 1) For replacement items, indicate type, size and quantity of the replaceable items.
- 2) Provide lubrication schedule, including type, grade, temperature range and frequency.
- 3) Provide a list of each type of lighting fixture lamp used, lamp fixture used, and source.
- 4) Include estimated mean time between failures for major parts.
- Wiring Diagrams, Block Diagrams, and Assembly Drawings.
- i. Panelboard Circuit Directory for each panelboard, including Panel Name, Panel Location, Panel Ratings, spare circuit breakers, spaces for additional circuit breakers.
- j. List of equipment keys turned over to the Owner.
- 5. Part 3: Project Documents and Certificates, including the following:
 - a. Shop Drawings and Product Data. Record Documents of the systems.
 - b. Photocopies of certificates.
 - c. Photocopies of Manufacturers' and Contractors' warranties, guarantees.
 - d. Test Reports: Copies of the approved results of all tests required under all sections of specifications.
 - e. Inspection Certificates.

h.

- f. Manufacturer's Conformance Certificates.
- 6. Provide one copy (DVD video disk) of video instruction session with each booklet set. Label video disk with all pertinent information.
- 7. Submit one copy of completed volumes in final form 15 days prior to final Inspection. This copy will be returned with Engineer comments. Revise content of documents as required prior to final submittal.
- 8. Submit final volumes revised, within ten days after final inspection.
- C. Upon completion of the project, the Contractor shall furnish the Owner a complete list of suppliers of equipment for parts and maintenance purposes. The list shall include the name, address, and telephone number of the parts and maintenance firm on a single 8-1/2" x 11" sheet of paper.
- D. This item shall include the furnishing of a complete list of equipment installed on the project, including the Manufacturer's name, the make and model number of the equipment, and address and telephone number of the nearest supplier who stocks maintenance and/or replacement parts. The list should be submitted along with as-built drawings and be typed in an organized manner.

3.18 INSTALLATION AND COORDINATION DRAWINGS:

- A. In congested areas, prepare, submit, and use composite installation and coordination drawings to assure proper coordination and installation of work. Drawings shall include, but not be limited, to the following: Complete Electrical Drawings showing coordination with lights, electrical equipment, mechanical, plumbing, HVAC, structural, and architectural elements and provision for access.
- B. Draw plans to a scale not less than 3/8-inch equals one foot. Include plans, sections, and elevations of proposed work, showing all equipment and conduit in areas involved. Fully dimension all work including lighting fixtures, conduits, pullboxes, panelboards, and other electrical work, walls, doors, ceilings, columns, beams, joists, mechanical equipment, and other architectural and structural work.
- C. Identify all equipment and devices on wiring diagrams and schematics. Where field connections are shown to factory-wired terminals, include manufacturer's literature showing internal wiring.

END OF SECTION

SECTION 260500

COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Electrical equipment coordination and installation.
 - 2. Sleeves for raceways and cables.
 - 3. Sleeve seals.
 - 4. Grout.
 - 5. Common electrical installation requirements.

1.3 DEFINITIONS

- A. EPDM: Ethylene-propylene-diene terpolymer rubber.
- B. NBR: Acrylonitrile-butadiene rubber.
- 1.4 SUBMITTALS
 - A. Product Data: For sleeve seals.
- 1.5 COORDINATION
 - A. Coordinate arrangement, mounting, and support of electrical equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
 - B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
 - C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."
 - D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Firestopping.".

PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Sleeves for Rectangular Openings: Galvanized sheet steel.
 - 1. Minimum Metal Thickness:
 - a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side more than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 - b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches (1270 mm) and 1 or more sides equal to, or more than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

2.2 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Advance Products & Systems, Inc.
 - b. Metraflex Co.
 - c. Pipeline Seal and Insulator, Inc.
 - 2. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - 3. Pressure Plates: Carbon steel. Include two for each sealing element.
 - 4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to piping systems installed at a required slope.
- 3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS
 - A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.
 - B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
 - C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 - D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
 - E. Cut sleeves to length for mounting flush with both surfaces of walls.
 - F. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.
 - G. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable, unless indicated otherwise.
 - H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
 - 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.
 - I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants.".
 - J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Firestopping."
 - K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
 - L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

- A. Install to seal exterior wall penetrations.
- B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Firestopping."

END OF SECTION

SECTION 260505

ELECTRICAL DEMOLITION FOR REMODELING

PART 1 - GENERAL

1.1 SCOPE

- A. Electrical demolition shall be carried out per the Contract Documents. In addition to work indicated on the Drawings, remove all unused conduit and wiring previously abandoned above ceiling, and provide proper support for all existing / new low voltage wiring above the ceilings per NEC. Wiring shall not be laying directly upon the ceiling systems.
- B. Provide all cutting and patching for electrical construction.
- C. Provide temporary service and provisions to maintain existing systems.

PART 2 - PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. Materials and equipment for patching and extending work: As specified in individual sections.

2.2 FIELD SERVICES AND SURVEYS

- A. The Contractor shall examine the site, determine all conditions and circumstances and gather all data and information required for the work.
- B. The Contractor shall survey all new and existing wiring, circuitry, cabling, equipment and devices. Data gathering shall include, but not be limited to, equipment nameplate information, ratings, voltage, wiring configurations, conductor lengths, conductor routing, conductor sizes, equipment connections, and other information as required to maintain existing systems.
- C. The Contractor shall provide complete field investigations to determine existing and new conductor, cable, and conduit routing, points of connections, and tracing of existing systems.
- D. The Contractor shall assume that all information shall be obtained from field surveys and not from Owner's records. If Owner's records are made available to the Contractor, for information only, the Contractor shall verify the Owner's Records with the existing conditions.
- E. Field investigations include, but are not limited to, performing surveys, opening of equipment enclosures, and other work as required to maintain existing systems.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Demolition Drawings are based on casual field observation and existing record documents. Report discrepancies to the Engineer before disturbing existing installation.
- B. Beginning of demolition means installer accepts existing conditions.

3.2 PREPARATION

A. Disconnect electrical systems in walls, floors, and ceilings scheduled for removal.

B. Coordinate utility service outages with the Owner. Also, coordinate utility service outages with Utility Company.

3.3 CONNECTIONS AND ALTERATIONS TO EXISTING SYSTEMS

- A. Keep all existing electrical systems in operation during the progress of the work. Provide temporary electrical connections to systems of equipment, etc., where necessary to maintain continuous operation until the new systems and equipment are ready for operation.
- B. When existing electrical work is removed, remove all conduit, ducts, supports, etc. to a point below the finished floors or behind finished walls and cap. Such points shall be far enough behind finished surfaces to allow for the installation of the normal thickness of finished material.
- C. When the work specified hereunder connects to any existing equipment, conduit, wiring, etc., perform all necessary alterations, cuttings, fittings, etc., of the existing work as may be necessary or required to make satisfactory connections between the new and existing work and leave the complete work in a finished and workmanlike condition.
- D. When the work specified under other divisions necessitates relocation of existing equipment, conduits, wiring, etc., perform all work and make all necessary changes to existing work as may be required to leave the completed work in a finished and workmanlike condition.
- E. Contractor shall be responsible for removing and replacing existing ceiling tile within the lay-in ceiling areas as required. Contractor shall provide all necessary cutting and fitting of bushed holes for cable passage through tiles. Any tiles damaged during the Contract shall be replaced with like kind at no cost to the Owner.
- F. Provide temporary wiring and connections to maintain existing systems in service during construction. When work must be performed on energized equipment or circuits, use personnel experienced in such operations. In particular, all security and life safety systems must be maintained in operation at all times as required by the Owner. This includes security, safety lighting, and fire alarm.
- G. Existing Electrical Service: Maintain existing system in service. Disable system only to make switchovers and connections. Obtain written permission from Owner at least 15 days before partially or completely disabling system. Minimize outage duration. Make temporary connections to maintain service in areas adjacent to work area. The Contractor shall be responsible for maintaining electrical service to all areas of the building during construction. The Contractor shall provide temporary power and lighting for areas of the building that are under construction and shall maintain power for all systems in areas of he building not under construction. The contractor shall be responsible for the relocation of all electrical equipment and its associated wiring as required by construction phasing.
- H. Emergency Power: The Contractor shall provide temporary emergency lighting along paths of egress in completed areas through use of the existing emergency power system or temporary battery pack fixtures as required by NFPA and the local authority having jurisdiction. Outages required for relocation and/or extension of the existing electrical systems shall be kept to a minimum duration, performed while building is not occupied and scheduled in advance with the Owner. The Contractor shall fully examine the existing systems, determine all existing conditions and circumstances under which the work shall be performed and make all allowances for same. No additional cost to the Owner shall be permitted for the Contractors' failure to do so.
- I. The Contractor shall trace all circuits and controls to be disconnected to ensure that vital services to other areas are not interrupted.
3.4 PROTECTION

- A. Provide protection for all existing and new cabling. Provide inner duct, conduit or other suitable means of protection to prevent damage to cables located in renovated areas.
- B. Damage to wiring, cabling or equipment shall be repaired by skilled mechanics for the trade involved at no additional contract amount.
- C. Fixtures, materials and equipment shall be protected at all times. The Contractor shall make good any damage caused either directly or indirectly by his workmen. Conduit openings shall e closed with caps or plugs during installation. Fixtures and equipment shall be tightly covered and protected against dirt, water and chemical or other injury. At the completion of all work, the fixtures, materials and equipment shall be thoroughly cleaned and turned over in a condition satisfactory to the Owner.
- D. Damage: Where wiring, raceways, lighting fixtures, devices or equipment to remain is inadvertently damaged or disturbed, cut out and remove damaged section and provide new of equal or capacity or quality.

3.5 ELECTRICAL DEMOLITION

- A. Remove from the premises and dispose of all existing wiring, conduit, material, fixtures, devices, equipment, etc., not required for re-use or re-installation.
- B. Deliver on the premises where directed existing material and equipment which is removed and is desired by the Owner or is indicated to remain the property of the Owner.
- C. All other equipment and materials which are removed shall become the property of the Contractor and shall be removed by him from the premises.
- D. Where electrical equipment is removed, also remove all wiring back to source panelboard or switch or to last remaining device on the same circuit. All conduit, hangers, supports, etc., shall also be removed unless otherwise noted. Such conduit may remain to be reused for new work provided said conduit is of the proper size and type as that specified and, in a condition, acceptable to Engineer and Owner.
- E. Any conduit abandoned in concrete slabs, walls, or other inaccessible locations shall be left empty except for a nylon pull wire. Ends shall be capped with push plugs for future use.
- F. Where an existing system is indicated to be removed, the Contractor shall provide complete removal of entire system including all wiring, conduit, and connected/associated fixtures and devices. The system shall be removed in its entirety unless otherwise noted.
- H. Trace and remove all data cables in demolition area.

3.6 EXISTING CONDUIT WORK

- A. Remove all abandoned raceway, including abandoned raceway above accessible ceiling finishes. Cut raceway flush with walls and floors, and patch surfaces. Remove conduit back to point of penetration/exposure.
- B. Remove concealed abandoned raceway to its source.
- C. Abandoned Work: buried electrical work abandoned in place, shall be cut out approximately 2 inches beyond the face of adjacent construction, capped and the adjacent surface patched to match the existing finish.

- D. Disconnect abandoned outlets and remove devices. Remove abandoned outlets if raceway servicing them is abandoned and removed. Provide blank cover for abandoned outlets that are not removed.
- E. Remove all abandoned wiring from exiting conduits and ductbanks.
- F. Contractor shall provide all cutting and patching required to connect to and extend existing conduits, wiring, circuits, etc.

3.7 CLEANING AND REPAIR

- A. Clean and repair existing equipment and materials that remain or are to be reused.
- B. Panelboards: Provide typed circuit directory showing revised circuiting arrangement.
- C. Provide new labels on all existing electrical equipment being re-used.

END OF SECTION

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Copper building wire rated 600 V or less.
 - 2. Metal-clad cable, Type MC, rated 600 V or less.
 - 3. Metal-clad cable, Type MC Luminary Cable, rated 600 V or less.
 - 4. Connectors, splices, and terminations rated 600 V and less.
- B. Related Requirements:
 - 1. Section 260533 "Raceways and Boxes for Electrical Systems"

1.3 DEFINITIONS

- A. RoHS: Restriction of Hazardous Substances.
- 1.4 INFORMATIONAL SUBMITTALS
 - A. Product Data: For each type of product.
 - B. Product Schedule: Indicate type, use, location and termination locations.

1.5 QUALITY ASSURANCE

- A. Electrical devices, accessories and components; are certified by a testing agency approved by the local authority having jurisdiction, and are listed and labeled per NFPA 70 Article 100.
- B. Installation shall comply with applicable nation, state and local electrical codes and NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Products: Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Alpha Wire Company.
 - 2. American Bare Conductor.
 - 3. Belden Inc.
 - 4. Cerro Wire LLC.

- 5. Southwire Company.
- 6. WESCO.

2.2 COPPER BUILDING WIRE

- A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.
- B. Standards:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 - 2. RoHS compliant.
 - 3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
- C. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.
- D. Conductor Insulation:
 - 1. Type USE-2and Type SE: Comply with UL 854.
 - 2. Type THHN and Type THWN-2: Comply with UL 83.
 - 3. Type XHHW-2: Comply with UL 44.
- 2.3 METAL-CLAD CABLE, TYPE MC
 - A. Description: A factory assembly of one or more current-carrying insulated conductors in an overall metallic sheath.
 - B. Standards:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 - 2. Comply with UL 1569.
 - 3. RoHS compliant.
 - 4. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
 - C. Circuits:
 - 1. Single circuit.
 - 2. Power-Limited Fire-Alarm Circuits: Comply with UL 1424.
 - D. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.
 - E. Ground Conductor: Insulated.
 - F. Conductor Insulation:
 - 1. Type TFN/THHN/THWN-2: Comply with UL 83.
 - G. Armor: Steel; interlocked.

H. Jacket: PVC applied over armor.

2.4 METAL-CLAD CABLE, TYPE MC, MC LUMINARY CABLE

- A. Description: A factory assembly of one or more current-carrying insulated conductors in an overall metallic sheath.
- B. Standards:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 - 2. Comply with UL 1569.
 - 3. RoHS compliant.
 - 4. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
- C. Circuits:
 - 1. Single circuit.
- D. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.
- E. Ground Conductor: Insulated.
- F. Conductor Insulation:
 - 1. Type THHN: No. 10 and No. 12 AWG; power conductors.
 - 2. Type TFN: No. 16 AWG twisted pair; control conductors
- G. Armor: Steel; interlocked.
- H. Jacket: PVC applied over armor.

2.5 CONNECTORS AND SPLICES

- A. Description: Factory-fabricated connectors, splices, and lugs of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to the following:
 - 1. 3M Electrical Products.
 - 2. AFC Cable Systems; a part of Atkore International.
 - 3. Gardner Bender.
 - 4. Hubbell Power Systems, Inc.
 - 5. Ideal Industries, Inc.
 - 6. O-Z/Gedney; a brand of Emerson Industrial Automation.
 - 7. TE Connectivity Ltd.
 - 8. Thomas & Betts Corporation; A Member of the ABB Group.
- C. Connectors:

- 1. Jacketed Cable Connectors: For steel and aluminum jacketed cables, zinc die-cast with compression fittings, designed to connect conductors specified in this Section.
- 2. Split Bolt & Set Screw Connectors: Not Acceptable.
- 3. Spring Wire Connectors: Solderless spring type pressure connector with insulating covers for copper wire splices and taps. Use for conductor sizes 10 AWG and smaller.
- 4. Solderless Pressure Connectors: High copper alloy terminal. May be used only for cable termination to equipment pads or terminals. Not approved for splicing.
- 5. All wire connectors used in underground or exterior pull boxes shall be gel-filled twist connectors or a connector designed for damp and wet locations.
- 6. Compression (crimp) Connectors: Long barrel; seamless, tin-plated electrolytic high conductivity copper tubing, internally beveled barrel ends. Connector shall be clearly marked with the wire size and type and proper number and location of crimps. Mechanical Connectors: Bolted type tin-plated; high conductivity copper alloy; spacer between conductors; beveled cable entrances.
- 7. Heat shrinkable tubing shall meet the requirements of ANSI C119.1-1986 for buried connections to 90°C and shall be material flame-retarded per IEEE 383 "Vertical Tray Flame Test". Motor connection kits shall consist of heat-shrinkable, polymeric insulating material over the connection area and a high dielectric strength mastic to seal the ends against ingress of moisture and contamination. Motor connection kits shall accommodate a range of cable sizes for both in-line and stub-type configurations. Connection kits shall be independent of cable manufacturer's tolerances
- D. Lugs: One piece, seamless, designed to terminate conductors specified in this Section.
 - 1. Material: Copper.
 - 2. Type: Two hole with standard barrels.
 - 3. Termination: Compression.
- E. Wire Connectors:
 - 1. Wire nuts installed in wet locations, exterior, etc., shall be self-contain, waterproof and corrosion-proof units incorporating prefilled silicone grease to block out moisture and air.
 - 2. Connectors shall be UL listed appropriately sized according to manufacturer's recommendations for the suitable wire sizes and voltage ratings.
 - 3. Connectors' body shall have a color-coded outer shell.

PART 3 - EXECUTION

- 3.1 CONDUCTOR MATERIAL APPLICATIONS
 - A. Feeders: Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
 - B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
 - C. Power-Limited Fire Alarm and Control: Solid for No. 12 AWG and smaller.
- 3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS
 - A. Service Entrance: Type THHN/THWN-2, single conductors in raceway.
 - B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.

- C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
- D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.
- E. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type MC Cabling (20-foot maximum length).
- F. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.
- G. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainlesssteel, wire-mesh, strain relief device at terminations to suit application.
- H. Type MC Luminary Cable may be used in short lengths (20-foot maximum) for final connections to lighting fixtures and may be used between light fixtures for 0-10V control.
- I. Class I Control Circuits: Type THHN-THWN, in raceway.
- J. Class II Control Circuits: Type THHN-THWN, in raceway.
- 3.3 INSTALLATION OF CONDUCTORS AND CABLES
 - A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
 - B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
 - C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values. Lubricant shall be water based, no Yellow 77.
 - D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
 - E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
 - F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."
 - G. Branch circuits of 120V, wire size shall be as follows:
 - 1. Homerun from panelboard to first outlet: size as indicated on E0.1 "20 Ampere Circuits" Chart.
 - 2. From first outlet to other outlets: No. 12.
 - H. All circuits for exterior electric work shall be No. 10 (minimum) and contain and extra No. 10 copper ground conductors. All exterior wiring shall be installed in conduit as specified above, unless otherwise noted as larger on the Drawings.

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material.
- C. Splices shall be done in junction boxes and/or outlet boxes only.
 - 1. Conductors No. 10 and smaller, use wire connectors.
 - 2. Conductors No. 8 and larger, shall be of the type indented into the conductor by means of a hand or hydraulic pressure tool.
- D. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches (150 mm) of slack.

3.5 IDENTIFICATION

- A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."
- B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.
- 3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS
 - A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies.
- 3.7 FIRESTOPPING
 - A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

END OF SECTION

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

1. This Section includes methods and materials for grounding systems and equipment.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Qualification Data: For testing agency and testing agency's field supervisor.
- C. Field quality-control test reports.
- 1.4 QUALITY ASSURANCE
- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
 - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch (6 mm) in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.

2.2 CONNECTORS

- A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.
- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.
 - 1. Pipe Connectors: Clamp type, sized for pipe.
- C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No. 10 AWG and smaller, and stranded conductors for No. 8 AWG and larger, unless otherwise indicated.
- B. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors, except at test wells and as otherwise indicated.
 - 3. Connections to Structural Steel: Welded connectors.
- 3.2 EQUIPMENT GROUNDING
- A. Install insulated equipment grounding conductors with all feeders and branch circuits of the same type as the circuit conductors. Install in same conduit with circuit conductors.

3.3 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment.
 - 3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp.
- C. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.

END OF SECTION

HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. RMC: Rigid metal conduit.
- 1.4 PERFORMANCE REQUIREMENTS
 - A. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.
 - B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 - C. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.
- 1.5 SUBMITTALS
 - A. Product Data: For the following:
 - 1. Steel slotted support systems.
- 1.6 QUALITY ASSURANCE
 - A. Comply with NFPA 70.
- 1.7 COORDINATION
 - A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
 - B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 and Division 23.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Thomas & Betts Corporation (Kindorf).
 - b. Unistrut; Tyco International, Ltd.
 - c. Wesanco, Inc. (Westrut).
 - 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 - 3. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 - 4. Channel Dimensions: Selected for applicable load criteria.
- B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.
- C. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.
- E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Hilti Inc.
 - 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 3) MKT Fastening, LLC.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated or stainless steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 - a. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Hilti Inc.
 - 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 3) MKT Fastening, LLC.
 - 3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.

- 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
- 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
- 6. Toggle Bolts: All-steel springhead type.
- 7. Hanger Rods: Threaded steel.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.
- C. Submit structural calculations for load and strength of each component and detailing of each assembly.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.
- B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.
- C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with two-bolt conduit clamps.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).
- C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.

- 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
- 6. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69.
- 7. To Light Steel: Sheet metal screws.
- 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.
- D. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for sitefabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION

RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. FMC: Flexible metal conduit.
- D. LFMC: Liquidtight flexible metal conduit.
- E. LFNC: Liquidtight flexible nonmetallic conduit.
- F. RNC: Rigid nonmetallic conduit.
- 1.4 SUBMITTALS
 - A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
 - B. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Custom enclosures and cabinets.
 - C. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Structural members in the paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.
- 1.5 QUALITY ASSURANCE
 - A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 - B. Comply with NFPA 70.

Rosa Parks MS – Generator and Electrical Upgrade ©2023 Alban Engineering, Inc.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND TUBING

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Allied Tube & Conduit; a Tyco International Ltd. Co.
 - 2. Electri-Flex Co.
 - 3. Wheatland Tube Company.
- B. Rigid Steel Conduit: ANSI C80.1.
- C. IMC: ANSI C80.6.
- D. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit or IMC.
 - 1. Comply with NEMA RN 1.
 - 2. Coating Thickness: 0.040 inch (1 mm), minimum.
- E. EMT: ANSI C80.3.
- F. FMC: Zinc-coated steel.
- G. LFMC: Flexible steel conduit with PVC jacket.
- H. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.
 - 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886.
 - 2. Fittings for EMT: Compression type.
 - 3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness, 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints.
- I. Joint Compound for Rigid Steel Conduit or IMC: Listed for use in cable connector assemblies, and compounded for use to lubricate and protect threaded raceway joints from corrosion and enhance their conductivity.
- 2.2 NONMETALLIC CONDUIT AND TUBING
 - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Anamet Electrical, Inc.; Anaconda Metal Hose.
 - 2. Electri-Flex Co.
 - 3. Lamson & Sessions; Carlon Electrical Products.
 - B. RNC: NEMA TC 2, Type EPC-40-PVC, unless otherwise indicated.
 - C. LFNC: UL 1660.
 - D. Fittings for RNC: NEMA TC 3; match to conduit or tubing type and material.
 - E. Fittings for LFNC: UL 514B.

2.3 METAL WIREWAYS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Cooper B-Line, Inc.
 - 2. Hoffman.
 - 3. Square D; Schneider Electric.
- B. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 1, unless otherwise indicated.
- C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, holddown straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Hinged type.
- E. Finish: Manufacturer's standard enamel finish.

2.4 SURFACE RACEWAYS

- A. Surface Metal Raceways: Galvanized steel with snap-on covers. Manufacturer's standard enamel finish in color white.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Thomas & Betts Corporation.
 - b. Walker Systems, Inc.; Wiremold Company (The).
 - c. Wiremold Company (The); Electrical Sales Division.
- B. Surface metal raceway may be used where conduits for lighting, public address, clock outlets, "normal" power, fire alarm and security systems wiring may not otherwise be concealed.

Surface metal raceway shall be sized as required by the application. The raceway and all system components shall be UL listed. Surface metal raceway shall be steel, zinc plated, galvanized, and shall be suitable or field repainting to match surroundings. The raceway shall be a one-piece design with a base and cover factory assembled.

Installation shall utilize hand-operated cutting tool available from the Manufacturer to ensure clean, square cuts. Provide all mounting clips, straps, couplings, internal and external elbows, cover clips, tees, entrance fittings, conduit connectors and bushings as necessary for a complete installation. Covers shall overlap the raceway to hide uneven cuts. All fittings shall be provided with a base, where applicable. All raceway systems shall be installed complete, including insulation bushings and inserts where required by manufacturer's installation sheets. All unused raceway openings shall be closed.

Install raceway in accordance with NEC and Manufacturer's instructions. Raceway shall be level and plumb.

Provide device boxes for mounting standard devices and faceplates. Provide extension boxes as required to adapt to existing standard flush switch and receptacle boxes.

2.5 BOXES, ENCLOSURES, AND CABINETS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
 - 2. Hoffman.
 - 3. Walker Systems, Inc.; Wiremold Company (The).
 - 4. Woodhead, Daniel Company; Woodhead Industries, Inc. Subsidiary.
- B. Sheet Metal Outlet and Device Boxes: NEMA OS 1.
- C. Cast-Metal Outlet and Device Boxes: NEMA FB 1, aluminum, Type FD, with gasketed cover.
- D. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- E. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- F. Cast-Metal Access, Pull, and Junction Boxes: NEMA FB 1, cast aluminum with gasketed cover.
- G. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
- H. Cabinets:
 - 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 - 2. Hinged door in front cover with flush latch and concealed hinge.
 - 3. Key latch to match panelboards.
 - 4. Metal barriers to separate wiring of different systems and voltage.
 - 5. Accessory feet where required for freestanding equipment.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below, unless otherwise indicated:
 - 1. Exposed, not subject to severe physical damage: RMC.
 - 2. Concealed Conduit, Aboveground: Rigid steel conduit.
 - 3. Underground Conduit: RNC, Type EPC-40-PVC, direct buried unless otherwise indicated.
 - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 4X, stainless steel.
- B. Comply with the following indoor applications, unless otherwise indicated:
 - 1. Exposed, Not Subject to Severe Physical Damage: EMT.
 - 2. Exposed and Subject to Severe Physical Damage: Rigid steel conduit. Includes raceways in the following locations:

- a. Loading dock.
- b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
- c. Mechanical rooms.
- 3. Concealed in Ceilings and Interior Walls and Partitions: EMT.
- 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
- 5. Damp or Wet Locations: Rigid steel conduit.
- 6. Raceways for Optical Fiber or Communications Cable in Spaces Used for Environmental Air: Plenum-type, optical fiber/communications cable raceway.
- 7. Raceways for Optical Fiber or Communications Cable Risers in Vertical Shafts: Risertype, optical fiber/communications cable raceway.
- 8. Raceways for Concealed General Purpose Distribution of Optical Fiber or Communications Cable: EMT.
- 9. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4X, stainless steel in damp or wet locations.
- C. Minimum Raceway Size: 3/4-inch (21-mm) trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.
 - 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with that material. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer.
- 3.2 INSTALLATION
 - A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.
 - B. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hotwater pipes. Install horizontal raceway runs above water and steam piping.
 - C. Complete raceway installation before starting conductor installation.
 - D. Support raceways as specified in Section 260529, "Hangers and Supports for Electrical Systems."
 - E. Arrange stub-ups so curved portions of bends are not visible above the finished slab.
 - F. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed.
 - G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.
 - H. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
 - I. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.

- J. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire.
- K. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where otherwise required by NFPA 70.
- L. Expansion-Joint Fittings for RNC: Install in each run of aboveground conduit that is located where environmental temperature change may exceed 30 deg F (17 deg C), and that has straight-run length that exceeds 25 feet (7.6 m).
 - 1. Install expansion-joint fittings for each of the following locations, and provide type and quantity of fittings that accommodate temperature change listed for location:
 - a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F (70 deg C) temperature change.
 - b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F (86 deg C) temperature change.
 - c. Indoor Spaces: Connected with the Outdoors without Physical Separation: 125 deg F (70 deg C) temperature change.
 - d. Attics: 135 deg F (75 deg C) temperature change.
 - 2. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F (0.06 mm per meter of length of straight run per deg C) of temperature change.
 - 3. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at the time of installation.
- M. Flexible Conduit Connections: Use maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed lighting fixtures, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.
- N. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.
- 3.3 FIRESTOPPING
 - A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Firestopping."

3.4 PROTECTION

A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

- 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
- 2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION

SECTION 26 05 44

SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

- 1.1 SUMMARY
 - A. Section Includes:
 - 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 - 2. Sleeve-seal systems.
 - 3. Sleeve-seal fittings.
 - 4. Grout.
 - 5. Silicone sealants.
 - B. Related Requirements:
 - 1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fireresistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Wall Sleeves:
 - 1. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, plain ends.
 - 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.
- C. Sleeves for Rectangular Openings:
 - 1. Material: Galvanized sheet steel.
 - 2. Minimum Metal Thickness:
 - a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and with no side larger than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 - b. For sleeve cross-section rectangle perimeter 50 inches (1270 mm) or more and one or more sides larger than 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

2.2 SLEEVE-SEAL SYSTEMS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Advance Products & Systems, Inc</u>.
 - b. <u>CALPICO, Inc</u>.
 - c. Metraflex Company (The).
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 3. Pressure Plates: Carbon steel.
 - 4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

- A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. HOLDRITE.

2.4 GROUT

- A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.
- B. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

- A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
 - 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

- A. Comply with NECA 1.
- B. Comply with NEMA VE 2 for cable tray and cable penetrations.
- C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 - 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 - a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 - b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 - 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 3. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
 - 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 - 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 3 inches (76.2 mm) above finished floor level. Install sleeves during erection of floors.
- D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.
- E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boottype flashing units applied in coordination with roofing work.
- F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.
- B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 26 05 44

IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Identification for raceway and metal-clad cable.
 - 2. Identification for conductors and communication and control cable.
 - 3. Equipment identification labels.
 - 4. Miscellaneous identification products.

1.3 SUBMITTALS

- A. Product Data: For each electrical identification product indicated.
- B. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.
- 1.4 QUALITY ASSURANCE
 - A. Comply with ANSI A13.1 and ANSI C2.
 - B. Comply with NFPA 70.
 - C. Comply with 29 CFR 1910.145.

1.5 COORDINATION

- A. Coordinate identification names, abbreviations, colors, and other features with requirements in the Contract Documents, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual, and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.
- B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- C. Coordinate installation of identifying devices with location of access panels and doors.
- D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 RACEWAY AND METAL-CLAD CABLE IDENTIFICATION MATERIALS

- A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.
- B. Color for Printed Legend:
 - 1. Power Circuits: Black letters on an orange field.
 - 2. Legend: Indicate system or service and voltage.
- C. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.
- D. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
- E. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
- F. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; 2 inches (50 mm) wide; compounded for outdoor use.
- 2.2 CONDUCTOR AND COMMUNICATION- AND CONTROL-CABLE IDENTIFICATION MATERIALS
 - A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide.
 - B. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
 - C. Aluminum Wraparound Marker Labels: Cut from 0.014-inch- (0.35-mm-) thick aluminum sheet, with stamped, embossed, or scribed legend, and fitted with tabs and matching slots for permanently securing around wire or cable jacket or around groups of conductors.
 - D. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch (50 by 50 by 1.3 mm), with stamped legend, punched for use with self-locking nylon tie fastener.
 - E. Write-On Tags: Polyester tag, 0.015 inch (0.38 mm) thick, with corrosion-resistant grommet and polyester or nylon tie for attachment to conductor or cable.
 - 1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.

2.3 EQUIPMENT IDENTIFICATION LABELS

A. Engraved, Laminated Acrylic or Melamine Label: Punched or drilled for screw mounting. White letters on a dark-gray background. Minimum letter height shall be 3/8 inch (10 mm).

2.4 CABLE TIES

- A. Cable Ties: Fungus-inert, self-extinguishing, 1-piece, self-locking, Type 6/6 nylon cable ties.
 - 1. Minimum Width: 3/16 inch (5 mm).
 - 2. Tensile Strength: 50 lb (22.6 kg), minimum.
 - 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).
 - 4. Color: Black, except where used for color-coding.

2.5 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Paint materials and application requirements are specified in Division 09 painting Sections.
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits More Than 30 A: Identify with orange self-adhesive vinyl tape applied in bands.
- B. Accessible Raceways and Cables of Auxiliary Systems: Identify the following systems with color-coded, self-adhesive vinyl tape applied in bands:
 - 1. Fire Alarm System: Red.
 - 2. Security System: Blue and yellow.
 - 3. Telecommunication System: Green and yellow.
 - 4. Control Wiring: Green and red.
- C. Power-Circuit Conductor Identification: For primary and secondary conductors No. 1/0 AWG and larger in vaults, pull and junction boxes, manholes, and handholes use color-coding conductor tape. Identify source and circuit number of each set of conductors. For single conductor cables, identify phase in addition to the above.
- D. Branch-Circuit Conductor Identification: Where there are conductors for more than three branch circuits in same junction or pull box, use aluminum wraparound marker labels. Identify each ungrounded conductor according to source and circuit number.
- E. Conductors to Be Extended in the Future: Attach write-on tags to conductors and list source and circuit number.
- F. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, signal, sound, intercommunications, voice, and data connections.
 - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 - 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
 - 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and Operation and Maintenance Manual.

- G. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 - 1. Labeling Instructions:
 - a. Indoor Equipment: Engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where 2 lines of text are required, use labels 2 inches (50 mm) high.
 - b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 - c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 - d. Fasten labels with appropriate mechanical fasteners that do not invalidate the NEMA or NRTL rating of the enclosure.
 - 2. Equipment to Be Labeled:
 - a. Electrical cabinets, and enclosures.
 - b. Access doors and panels for concealed electrical items.
 - c. Emergency system boxes and enclosures.
 - d. Disconnect switches.
 - e. Enclosed circuit breakers.
 - f. Motor starters, including variable-speed controllers.
 - g. Push-button stations.
 - h. Contactors.
 - i. Remote-controlled switches, dimmer modules, and control devices.

3.2 INSTALLATION

- A. Verify identity of each item before installing identification products.
- B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.
- C. Apply identification devices to surfaces that require finish after completing finish work.
- D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.
- E. Attach nonadhesive signs and plastic labels with screws and auxiliary hardware appropriate to the location and substrate.
- F. System Identification Color Banding for Raceways and Cables: Each color band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.
- G. Color-Coding for Phase and Voltage Level Identification, 600 V and Less: Use the colors listed below for ungrounded service, feeder, and branch-circuit conductors.
 - 1. Color shall be factory applied or, for sizes larger than No. 10 AWG if authorities having jurisdiction permit, field applied.

- 2. Colors for 208/120-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - d. Neutral: White.
 - e. Ground: Green.
- 3. Colors for 480/277-V Circuits:
 - a. Phase A: Brown.
 - b. Phase B: Orange.
 - c. Phase C: Yellow.
 - d. Neutral: White with colored stripe or gray.
 - e. Ground: Green.
- 4. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
- H. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.
- I. Painted Identification: Prepare surface and apply paint according to Division 09 painting Sections.

END OF SECTION

LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes: Distribution and buck-boost, dry-type transformers rated 600 V and less, with capacities up to 1500 kVA.
- 1.2 ACTION SUBMITTALS
 - A. Product Data: For each type of product.
 - B. Shop Drawings:
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.
 - 3. Include diagrams for power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For transformers, accessories, and components, from manufacturer.
- B. Qualification Data: For testing agency.
- C. Source quality-control reports.
- D. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Accredited by NETA.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Temporary Heating: Apply temporary heat according to manufacturer's written instructions.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Siemens Power Transmission & Distribution, Inc.
 - 2. General Electric Company
 - 3. Square D.
 - 4. Eaton.
- B. GENERAL TRANSFORMER REQUIREMENTS
- C. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. Transformers Rated 15 kVA and Larger: Comply with NEMA TP 1 energy-efficiency levels as verified by testing according to NEMA TP 2.
 - 1. Coil Material: Copper
- F. Encapsulation: Transformers smaller than 30 kVA shall have core and coils completely resin encapsulated.

2.2 DISTRIBUTION TRANSFORMERS

- A. Comply with NFPA 70, and list and label as complying with UL 1561.
- B. Provide transformers that are constructed to withstand seismic forces specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- C. Cores: One leg per phase.
- D. Enclosure: Ventilated.
 - 1. NEMA 250, Type 2: Core and coil shall be encapsulated within resin compound to seal out moisture and air.
- E. Transformer Enclosure Finish: Comply with NEMA 250.
 - 1. Finish Color: Gray.

- F. Taps for Transformers 3 kVA and Smaller: None.
- G. Taps for Transformers 7.5 to 24 kVA: Two 5 percent taps below rated voltage.
- H. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and four 2.5 percent taps below normal full capacity.
- I. Insulation Class: 220 deg C, UL-component-recognized insulation system with a maximum of 115-deg C rise above 40-deg C ambient temperature.
- J. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for nonsinusoidal load current-handling capability to the degree defined by designated K-factor.
 - 1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor.
 - 2. Indicate value of K-factor on transformer nameplate.
 - 3. Unit shall meet requirements of NEMA TP 1 when tested according to NEMA TP 2 with a K-factor equal to one.
- K. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 - 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
 - 2. Include special terminal for grounding the shield.
 - 3. Shield Effectiveness:
 - a. Capacitance between Primary and Secondary Windings: Not to exceed 33 picofarads over a frequency range of 20 Hz to 1 MHz.
 - b. Common-Mode Noise Attenuation: Minimum of minus 120 dBA at 0.5 to 1.5 kHz; minimum of minus 65 dBA at 1.5 to 100 kHz.
 - c. Normal-Mode Noise Attenuation: Minimum of minus 52 dBA at 1.5 to 10 kHz.
- L. Neutral: Rated 200 percent of full load current for K-factor rated transformers.
- M. Wall Brackets: Manufacturer's standard brackets.
- N. Low-Sound-Level Requirement: Minimum of 3 dBA less than NEMA ST 20 standard sound levels when factory tested according to IEEE C57.12.91.

2.3 BUCK-BOOST TRANSFORMERS

- A. Description: Self-cooled, two-winding dry type, rated for continuous duty and with wiring terminals suitable for connection as autotransformer. Transformers shall be listed and labeled as complying with UL 506 or UL 1561.
- B. Enclosure: Ventilated NEMA 250, Type 2.
 - 1. Finish Color: Gray.

2.4 IDENTIFICATION DEVICES

A. Nameplates: Engraved, laminated-plastic or metal nameplate for each distribution transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Section 260553 "Identification for Electrical Systems."

2.5 SOURCE QUALITY CONTROL

A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.
- B. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.
- D. Install wall-mounted transformers level and plumb with wall brackets fabricated by transformer manufacturer.
 - 1. Coordinate installation of wall-mounted and structure-hanging supports with actual transformer provided.
 - 2. Brace wall-mounted transformers as specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- E. Install transformers level and plumb on a concrete base with vibration-dampening supports. Locate transformers away from corners and not parallel to adjacent wall surface.
- F. Construct concrete bases according to Section 033000 "Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions, seismic codes applicable to Project, and requirements in Section 260529 "Hangers and Supports for Electrical Systems."
 - 1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
- G. Secure transformer to concrete base according to manufacturer's written instructions.
- H. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.
- I. Remove shipping bolts, blocking, and wedges.

3.2 CONNECTIONS

- A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS for dry-type, air-cooled, low-voltage transformers. Certify compliance with test parameters.
- B. Remove and replace units that do not pass tests or inspections and retest as specified above.
- C. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.
 - 1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
 - 2. Perform two follow-up infrared scans of transformers, one at four months and the other at 11 months after Substantial Completion.
 - 3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.

3.4 ADJUSTING

- A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.
- B. Connect buck-boost transformers to provide nameplate voltage of equipment being served, plus or minus 5 percent, at secondary terminals.
- C. Output Settings Report: Prepare a written report recording output voltages and tap settings.

END OF SECTION 26 22 00

PANELBOARDS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Distribution panelboards.
 - 2. Lighting and appliance branch-circuit panelboards.

1.2 DEFINITIONS

- A. MCCB: Molded-case circuit breaker.
- B. SPD: Surge protective device.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of panelboard.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details.
 - 2. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
 - 3. Detail bus configuration, current, and voltage ratings.
 - 4. Short-circuit current rating of panelboards and overcurrent protective devices.
 - 5. Include evidence of NRTL listing for series rating of installed devices.
 - 6. Include evidence of NRTL listing for SPD as installed in panelboard.
 - 7. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - 8. Include wiring diagrams for power, signal, and control wiring.
 - 9. Key interlock scheme drawing and sequence of operations.
 - 10. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards.

1.4 INFORMATIONAL SUBMITTALS

A. Panelboard schedules for installation in panelboards.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.
1.6 FIELD CONDITIONS

- A. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 - 1. Ambient temperatures within limits specified.
 - 2. Altitude not exceeding 6600 feet (2000 m).

1.7 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 - 1. Panelboard Warranty Period: Five (5) years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS COMMON REQUIREMENTS

- A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems."
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NEMA PB 1.
- D. Comply with NFPA 70.
- E. Enclosures: Flush and Surface-mounted, dead-front cabinets.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - b. Outdoor Locations: NEMA 250, Type 4X, stainless steel.
 - c. Kitchen Areas: NEMA 250, Type 4X stainless steel.
 - d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4X, stainless steel.
 - e. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
 - 2. Height: 84 inches (2.13 m) maximum.
 - 3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.
 - 4. Hinged Front Cover: Entire front trim hinged to box with continuous piano hinge and with standard door within hinged trim cover with continuous piano hinge. Trims shall cover all live parts and shall have no exposed hardware.
 - 5. Finishes:
 - a. Panels and Trim: Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 - b. Back Boxes: Same finish as panels and trim.

- F. Incoming Mains Location: Top and Bottom.
- G. Phase, Neutral, and Ground Buses: Hard-drawn copper, 98 percent conductivity.
- H. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Main and Neutral Lugs: Compression type, with a lug on the neutral bar for each pole in the panelboard.
 - 3. Ground Lugs and Bus-Configured Terminators: Compression type, with a lug on the bar for each pole in the panelboard.
 - 4. Feed-Through Lugs: Compression type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 5. Subfeed (Double) Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 - 6. Exact Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and UL listed as suitable for nonlinear loads.
- I. NRTL Label: Panelboards shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.
- J. Future Devices: Panelboards shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
- K. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.

2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
- B. Surge Suppression: See Specification 264313: Surge Protection for Low Voltage Power Circuits, Section 2.3, Panel Suppressors.

2.3 POWER PANELBOARDS

- A. Available Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Siemens Power Transmission & Distribution, Inc.
 - 2. General Electric Company
 - 3. Square D.
 - 4. Eaton.
- B. Panelboards: NEMA PB 1, distribution type.
- C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.

- 1. For doors more than 36 inches (914 mm) high, provide two latches, keyed alike.
- D. Mains: Circuit breaker.
- E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller: Bolt-on circuit breakers.
- F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Available Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Siemens Power Transmission & Distribution, Inc.
 - 2. General Electric Company
 - 3. Square D.
 - 4. Eaton.
- B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- C. Mains: Circuit breaker or lugs only, as indicated.
- D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.
- F. Column-Type Panelboards: Single row of overcurrent devices with narrow gutter extension and overhead junction box equipped with ground and neutral terminal buses.

2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Available Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Siemens Power Transmission & Distribution, Inc.
 - 2. General Electric Company
 - 3. Square D.
 - 4. Eaton.
- B. Coordinate "MCCB" and "Fused Switch" paragraphs below with Drawings. See the "Circuit Breakers" Article in the Evaluations for guidance on making selections.
- C. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers:
 - a. Inverse time-current element for low-level overloads.
 - b. Instantaneous magnetic trip element for short circuits.
 - c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.

- 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with frontmounted, field-adjustable trip setting.
- 3. Electronic Trip Circuit Breakers:
 - a. RMS sensing.
 - b. Field-replaceable rating plug or electronic trip.
 - c. Digital display of settings, trip targets, and indicated metering displays.
 - d. Multi-button keypad to access programmable functions and monitored data.
 - e. Ten-event, trip-history log. Each trip event shall be recorded with type, phase, and magnitude of fault that caused the trip.
 - f. Integral test jack for connection to portable test set or laptop computer.
 - g. Field-Adjustable Settings:
 - 1) Instantaneous trip.
 - 2) Long- and short-time pickup levels.
 - 3) Long and short time adjustments.
 - 4) Ground-fault pickup level, time delay, and I squared T response.
- 4. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
- 5. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).
- 6. Subfeed Circuit Breakers: Vertically mounted.
- 7. MCCB Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Breaker handle indicates tripped status.
 - c. UL listed for reverse connection without restrictive line or load ratings.
 - d. Lugs: Compression style, suitable for number, size, trip ratings, and conductor materials.
 - e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
 - f. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - g. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
 - h. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
 - i. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

2.6 IDENTIFICATION

- A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.
- B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.
- C. Circuit Directory: Directory card inside panelboard door, mounted in metal frame with transparent protective cover.

2.7 ACCESSORY COMPONENTS AND FEATURES

A. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1.
- B. Install panelboards and accessories according to NEMA PB 1.1.
- C. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- D. Mount top of trim 90 inches (2286 mm) above finished floor unless otherwise indicated.
- E. Mount panelboard cabinet plumb and rigid without distortion of box.
- F. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- G. Install overcurrent protective devices and controllers not already factory installed.
 - 1. Set field-adjustable, circuit-breaker trip ranges.
- H. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.
- I. Install filler plates in unused spaces.
- J. Stub four 1-inch (27-EMT) empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch (27-EMT) empty conduits into raised floor space or below slab not on grade.
- K. Arrange conductors in gutters into groups and bundle and wrap with wire ties.

3.2 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."
- B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

- D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- D. Panelboards will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

END OF SECTION 26 24 16

SECTION 262726

WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Standard-grade receptacles, 125 V, 20 A.
 - 2. GFCI receptacles, 125 V, 20 A.
 - 3. Cord and plug sets.
 - 4. Toggle switches, 120/277 V, 20 A.
 - 5. Wall-box dimmers.
 - 6. Wall plates.
- 1.3 DEFINITIONS
 - A. EMI: Electromagnetic interference.
 - B. GFCI: Ground-fault circuit interrupter.
 - C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
 - D. RFI: Radio-frequency interference.
- 1.4 ACTION SUBMITTALS
 - A. Product Data: For each type of product.
 - B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
 - C. Samples: One for each type of device and wall plate specified, in each color specified.
- 1.5 INFORMATIONAL SUBMITTALS
 - A. Field quality-control reports.
- 1.6 CLOSEOUT SUBMITTALS
 - A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packinglabel warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. Comply with NFPA 70.
- C. RoHS compliant.
- D. Comply with NEMA WD 1.
- E. Devices for Owner-Furnished Equipment:
 - 1. Receptacles: Match plug configurations.
 - 2. Cord and Plug Sets: Match equipment requirements.
- F. Finish Color:
 - 1. Wiring Devices Connected to Normal Power System: As selected by Architect unless otherwise indicated or required by NFPA 70 or device listing.
 - 2. Wiring Devices Connected to Emergency Electrical System: RED.
- G. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.
- 2.2 MANUFACTURERS:
 - A. Basis-of-Design Product: Subject to compliance with requirements, provide <u>Pass &</u> <u>Seymour/Legrand (Pass & Seymour)</u>; or a comparable product by one of the following:
 - 1. Cooper Industries/Cooper Wiring Devices.
 - 2. Hubbell Incorporated; Wiring Device-Kellems.
 - 3. Leviton Manufacturing Co., Inc.
- 2.3 RECEPTACLES, 125 V, 20 A
 - A. Duplex Receptacles, 125 V, 20 A; comply with UL 498, NEMA WD 1 and NEMA WD 6 configurations:
 - 1. Convenience: 5362
 - 2. Tamper-Resistant: TR5362
 - 3. Tamper-Resistant GFCI: 2097TR
 - a. Comply with UL 943, Class A
 - b. Integral self-testing with power denial technology
 - c. Minimum automatic self-test every: 3 seconds
 - d. Indicator light that is lighted when device is tripped.
 - 4. Tamper- and Weather-Resistant GFCI: 2097TRWR
 - a. Weatherproof cover: WIUC 10-CL.

2.4 TWIST-LOCKING RECEPTACLES

A. Twist-Lock, Single Receptacles, 125 V, 20 A:

Rosa Parks MS – Generator and Electrical Upgrade ©2023 Alban Engineering, Inc.

- 1. Configuration: NEMA WD 6, Configuration L5-20R.
- 2. Standards: Comply with UL 498.

2.5 PENDANT CORD-CONNECTOR DEVICES

- A. Description: Matching, locking-type plug and receptacle body connector, heavy-duty grade.
- B. Configuration: NEMA WD 6, Configurations L5-20P and L5-20R.
- C. Body: Nylon, with screw-open, cable-gripping jaws and provision for attaching external cable grip.
- D. External Cable Grip: Woven wire-mesh type made of high-strength, galvanized-steel wire strand, matched to cable diameter, and with attachment provision designed for corresponding connector.
- E. Standards: Comply with FS W-C-596.
- 2.6 CORD AND PLUG SETS
 - A. Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 - B. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with greeninsulated grounding conductor and ampacity of at least 130 percent of the equipment rating.
 - C. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection.
- 2.7 TOGGLE SWITCHES, 120/277 V, 20 A
 - A. Switches, 120/277V, 20A; comply with UL 20 and NEMA WD 1:
 - 1. Single-Pole: PS20AC1
 - 2. Three-Way: PS20AC3
 - 3. Four-Way: PS20AC4
 - 4. Key-Operated Single-Pole: PS20AC1-L
 - 5. Key-Operated Three-Way: PS20AC3-L
 - 6. Key-Operated Four Way: PS20AC4-L

2.8 DIMMERS

- A. Wall-Box Dimmers:
- B. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.
- C. Control: Continuously adjustable slider toggle switch; with single-pole or three-way switching. Comply with UL 1472.
- D. LED Lamp Dimmer Switches: Modular; compatible with LED lamps; 1200va rated, 0-10v dimming, rocker switch with slide dimmer, designed for LED power supplies, 3-way compatible, capable of consistent dimming with low end not greater than 10 percent of full brightness, flicker free. Leviton IP710-LF series or approved equals.

2.9 WALL PLATES

- A. Single Source: Obtain wall plates from same manufacturer of wiring devices.
- B. Single and combination types shall match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: 0.035-inch- (1-mm-) thick, satin-finished, Type 302 stainless steel.
 - 3. Material for Unfinished Spaces: Galvanized steel.
 - 4. Material for Damp Locations: Thermoplastic with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.
- C. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weatherresistant, thermoplastic with lockable cover.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.
- B. Coordination with Other Trades:
 - 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes, and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 - 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 - 4. Install wiring devices after all wall preparation, including painting, is complete.
- C. Conductors:
 - 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 - 3. The length of free conductors at outlets for devices shall comply with NFPA 70, Article 300, without pigtails.
- D. Device Installation:
 - 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
 - 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 - 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 - 4. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.

- 5. Use a torque screwdriver when a torque is recommended or required by manufacturer.
- 6. Tighten unused terminal screws on the device.
- 7. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.
- E. Receptacle Orientation:
 - 1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the left.
- F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
- G. Dimmers:
 - 1. Install dimmers within terms of their listing.
 - 2. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device, listing conditions in the written instructions.
- H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.
- 3.2 GFCI RECEPTACLES
 - A. Install non-feed-through GFCI receptacles where protection of downstream receptacles is not required.
- 3.3 IDENTIFICATION
 - A. Comply with Section 260553 "Identification for Electrical Systems."
 - B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.
 - C. Essential Electrical System: Mark receptacles supplied from the essential electrical system to allow easy identification using a self-adhesive label.
- 3.4 FIELD QUALITY CONTROL
 - A. Test Instruments: Use instruments that comply with UL 1436.
 - B. Test Instrument for Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
 - C. Perform the following tests and inspections:
 - 1. Test Instruments: Use instruments that comply with UL 1436.
 - 2. Test Instrument for Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
 - D. Tests for Receptacles:
 - 1. Line Voltage: Acceptable range is 105 to 132 V.

- 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
- 3. Ground Impedance: Values of up to 2 ohms are acceptable.
- 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
- 5. Using the test plug, verify that the device and its outlet box are securely mounted.
- 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault-current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
- E. Wiring device will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

END OF SECTION

SECTION 262813

FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cartridge fuses rated 600-V ac and less for use in control circuits, enclosed switches, enclosed controllers and motor-control centers.
 - 2. Spare-fuse cabinets.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material, dimensions, descriptions of individual components, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:
 - 1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 - a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 - b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.
 - 2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 - 3. Current-limitation curves for fuses with current-limiting characteristics.
 - 4. Coordination charts and tables and related data.
- B. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 - 1. Ambient temperature adjustment information.
 - 2. Current-limitation curves for fuses with current-limiting characteristics.
 - 3. Coordination charts and tables and related data.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- C. Comply with NEMA FU 1 for cartridge fuses.
- D. Comply with NFPA 70.
- 1.5 PROJECT CONDITIONS
 - A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F (5 deg C) or more than 100 deg F (38 deg C), apply manufacturer's ambient temperature adjustment factors to fuse ratings.
- 1.6 COORDINATION
 - A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.
- 1.7 EXTRA MATERIALS
 - A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper Bussmann, Inc.
 - 2. Edison Fuse, Inc.
 - 3. Ferraz Shawmut, Inc.

2.2 CARTRIDGE FUSES

- A. Characteristics: NEMA FU 1, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.
- 2.3 SPARE-FUSE CABINET
 - A. Characteristics: Wall-mounted steel unit with full-length, recessed piano-hinged door and keycoded cam lock and pull.
 - 1. Size: Adequate for storage of spare fuses specified with 15 percent spare capacity minimum.
 - 2. Finish: Gray, baked enamel.
 - 3. Identification: "SPARE FUSES" in 1-1/2-inch- (38-mm-) high letters on exterior of door.
 - 4. Fuse Pullers: For each size of fuse, where applicable and available, from fuse manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.
- B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.
- C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
- D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

- A. Cartridge Fuses:
 - 1. Feeders: Class J, time delay.
 - 2. Motor Branch Circuits: Class RK1, time delay.
 - 3. Other Branch Circuits: Class RK1, time delay.
 - 4. Control Circuits: Class CC, time delay.

3.3 INSTALLATION

- A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.
- B. Install spare-fuse cabinet(s).

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553, "Identification for Electrical Systems" and indicating fuse replacement information on inside door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION

SECTION 262816

ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Molded-case circuit breakers (MCCBs).
 - 4. Enclosures.

1.3 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.
- 1.4 ACTION SUBMITTALS
 - A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 - 4. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
 - B. Shop Drawings: For enclosed switches and circuit breakers.
 - 1. Include plans, elevations, sections, details, and attachments to other work.
 - 2. Include wiring diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Seismic Qualification Data: Certificates, for enclosed switches and circuit breakers, accessories, and components, from manufacturer.

C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Fuse Pullers: Two for each size and type.

1.8 FIELD CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).
 - 2. Altitude: Not exceeding 6600 feet (2010 m).

1.9 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Two (2) years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 **PERFORMANCE REQUIREMENTS**

- A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2.2 GENERAL REQUIREMENTS

A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.

- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- D. Comply with NFPA 70.
- 2.3 MANUFACTURERS:
 - A. Basis-of-Design Product: Subject to compliance with requirements, provide <u>Square D; by</u> <u>Schneider Electric</u> or comparable product by one of the following:
 - 1. Eaton.
 - 2. General Electric Company.
 - 3. SIEMENS Industry, Inc.; Energy Management Division.
- 2.4 FUSIBLE SWITCHES
 - A. Type HD, Heavy Duty:
 - 1. Single throw.
 - 2. Three pole.
 - 3. 600-V ac.
 - 4. 1200 A and smaller.
 - 5. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses.
 - 6. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
 - B. Accessories (Required per device):
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 - 4. Lugs: Compression type, suitable for number, size, and conductor material.
 - C. Optional Accessories (As specified on Drawings):
 - 1. Auxiliary Contact Kit: One NO/NC (Form "C") auxiliary contact, arranged to activate before switch blades open. Contact rating 120-V ac.
 - 2. Service-Rated Switches: Labeled for use as service equipment.

2.5 NONFUSIBLE SWITCHES

- A. Type HD, Heavy Duty:
 - 1. Single throw.
 - 2. Three pole.
 - 3. 600-V ac.
 - 4. 1200 A and smaller.

- 5. UL 98 and NEMA KS 1, horsepower rated.
- 6. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- B. Accessories (Required per device):
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Lugs: Compression type, suitable for number, size, and conductor material.
- C. Optional Accessories (As specified on Drawings):
 - 1. Auxiliary Contact Kit: One NO/NC (Form "C") auxiliary contact, arranged to activate before switch blades open. Contact rating 120-V ac.
 - 2. Service-Rated Switches: Labeled for use as service equipment.

2.6 MOLDED-CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be constructed using glass-reinforced insulating material. Current carrying components shall be completely isolated from the handle and the accessory mounting area.
- B. Circuit breakers shall have a toggle operating mechanism with common tripping of all poles, which provides quick-make, quick-break contact action. The circuit-breaker handle shall be over center, be trip free, and reside in a tripped position between on and off to provide local trip indication. Circuit-breaker escutcheon shall be clearly marked on and off in addition to providing international I/O markings. Equip circuit breaker with a push-to-trip button, located on the face of the circuit breaker to mechanically operate the circuit-breaker tripping mechanism for maintenance and testing purposes.
- C. MCCBs shall be equipped with a device for locking in the isolated position.
- D. Lugs shall be suitable for 140 deg F (60 deg C) rated wire on 100-A circuit breakers and below. 167 deg F (75 deg C) rated wire, sized according to the 167 deg F (75 deg C) temperature rating in NFPA 70.
- E. Standard: Comply with UL 489 with interrupting capacity to comply with available fault currents.
- F. Thermal-Magnetic Circuit Breakers: Inverse time-current thermal element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
- G. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings for circuit breaker frame sizes 400A and larger:
 - 1. Instantaneous trip.
 - 2. Long- and short-time pickup levels.
 - 3. Long- and short-time time adjustments.
 - 4. Ground-fault pickup level, time delay, and I-squared t response.
- H. Ground-Fault Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).

- I. Ground-Fault Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).
- J. Features and Accessories:
 - 1. Standard frame sizes, trip ratings, and number of poles.
 - 2. Lugs: Compression type, suitable for number, size, trip ratings, and conductor material.
 - 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 - 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 - 5. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
 - 6. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
 - 7. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuitbreaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
 - 8. Alarm Switch: One NO/NC contact that operates only when circuit breaker has tripped.
 - 9. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
 - 10. Electrical Operator: Provide remote control for on, off, and reset operations.
 - 11. Accessory Control Power Voltage: Integrally mounted, self-powered.

2.7 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
- B. Enclosure Finish: The enclosure shall be finished with gray baked enamel paint, electrodeposited on cleaned, phosphatized steel (NEMA 250 Type 1).
- C. Conduit Entry: NEMA 250 Types 4, 4X, and 12 enclosures shall contain no knockouts. NEMA 250 Types 7 and 9 enclosures shall be provided with threaded conduit openings in both endwalls.
- D. Operating Mechanism: The circuit-breaker operating handle shall be externally operable with the operating mechanism being an integral part of the box, not the cover. The cover interlock mechanism shall have an externally operated override. The override shall not permanently disable the interlock mechanism, which shall return to the locked position once the override is released. The tool used to override the cover interlock mechanism shall not be required to enter the enclosure in order to override the interlock.
- E. Enclosures designated as NEMA 250 Type 4, 4X stainless steel, 12, or 12K shall have a dual cover interlock mechanism to prevent unintentional opening of the enclosure cover when the circuit breaker is ON and to prevent turning the circuit breaker ON when the enclosure cover is open.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.
 - 1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

- A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 4X, stainless steel.
 - 3. Kitchen, Wash-Down Areas: NEMA 250, Type 4X, stainless steel.
 - 4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4X, stainless steel.

3.3 INSTALLATION

- A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- C. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- D. Install fuses in fusible devices.
- E. Comply with NFPA 70 and NECA 1.

3.4 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

- D. Perform tests and inspections.
 - 1. Visually and Mechanical inspect all equipment on project prior to installation.
 - 2. Correct malfunctioning units on-site, with new units.

3.6 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as specified in approved Coordination Study Shop Drawing.

END OF SECTION

SECTION 262913

ENCLOSED CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes ac, enclosed controllers rated 600 V and less, of the following types:
 - 1. Across-the-line, manual and magnetic controllers.
 - 2. Reduced-voltage controllers.
 - 3. Multispeed controllers.

1.3 SUBMITTALS

- A. Product Data: For each type of enclosed controller. Include dimensions and manufacturer's technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each enclosed controller.
 - 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Each installed unit's type and details.
 - b. Nameplate legends.
 - c. Short-circuit current rating of integrated unit.
 - d. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices in combination controllers.
 - 2. Wiring Diagrams: Power, signal, and control wiring.
- C. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout, required working clearances, and required area above and around enclosed controllers where pipe and ducts are prohibited. Show enclosed controller layout and relationships between electrical components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate field measurements.
- D. Qualification Data: For manufacturer and testing agency.
- E. Field quality-control test reports.
- F. Operation and Maintenance Data: For enclosed controllers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 - 1. Routine maintenance requirements for enclosed controllers and all installed components.

- 2. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
- G. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed and arrange to demonstrate that dip switch settings for motor running overload protection suit actual motor to be protected.

1.4 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A qualified manufacturer. Maintain, within 100 miles (160 km) of Project site, a service center capable of providing training, parts, and emergency maintenance and repairs.
- B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
 - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.
- C. Source Limitations: Obtain enclosed controllers of a single type through one source from a single manufacturer.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- E. Comply with NFPA 70.
- F. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed controllers, minimum clearances between enclosed controllers, and for adjacent surfaces and other items. Comply with indicated maximum dimensions and clearances.
- 1.5 DELIVERY, STORAGE, AND HANDLING
 - A. Store enclosed controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect enclosed controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.
 - B. If stored in areas subject to weather, cover enclosed controllers to protect them from weather, dirt, dust, corrosive substances, and physical damage. Remove loose packing and flammable materials from inside controllers; install electric heating of sufficient wattage to prevent condensation.

1.6 PROJECT CONDITIONS

- A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
 - 1. Notify Owner no fewer than fifteen (15) days in advance of proposed interruption of electrical service.
 - 2. Indicate method of providing temporary utilities.

3. Do not proceed with interruption of electrical service without Owner's written permission.

1.7 COORDINATION

- A. Coordinate layout and installation of enclosed controllers with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."
- C. Coordinate features of enclosed controllers and accessory devices with pilot devices and control circuits to which they connect.
- D. Coordinate features, accessories, and functions of each enclosed controller with ratings and characteristics of supply circuit, motor, required control sequence, and duty cycle of motor and load.

1.8 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Spare Fuses: Furnish one spare for every five installed, but no fewer than one set of three of each type and rating.
 - 2. Indicating Lights: Two of each type installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Square D.
 - 2. General Electrical Company; GE Industrial Systems.
 - 3. Eaton Corporation; Cutler-Hammer Products.

2.2 ACROSS-THE-LINE ENCLOSED CONTROLLERS

- A. Manual Controller: NEMA ICS 2, general purpose, Class A, with "quick-make, quick-break" toggle or pushbutton action, and marked to show whether unit is "OFF," "ON," or "TRIPPED."
 - 1. Overload Relay: Ambient-compensated type with inverse-time-current characteristics and NEMA ICS 2, Class 10 tripping characteristics. Relays shall have heaters and sensors in each phase, matched to nameplate, full-load current of specific motor to which they connect and shall have appropriate adjustment for duty cycle.
 - 2. Pilot Light: Red
 - 3. Configuration: Non-reversing
- B. Magnetic Controller: NEMA ICS 2, Class A, full voltage, nonreversing, across the line, unless otherwise indicated.

- 1. Control Circuit: 120 V; obtained from integral control power transformer of sufficient capacity to operate connected pilot, indicating and control devices, plus 100 percent spare capacity.
- 2. Overload Relay: Ambient-compensated type with inverse-time-current characteristic and NEMA ICS 2, Class 20 tripping characteristic. Provide with heaters or sensors in each phase matched to nameplate full-load current of specific motor to which they connect and with appropriate adjustment for duty cycle.
- C. Combination Magnetic Controller: Factory-assembled combination controller and disconnect switch or circuit breaker, or noted on the Drawings..
 - 1. Nonfusible Disconnecting Means: NEMA KS 1, heavy-duty, nonfusible switch.
 - 2. Circuit Breaker: Thermal magnetic.

2.3 REDUCED-VOLTAGE ENCLOSED CONTROLLERS

A. Autotransformer Reduced-Voltage Controller: NEMA ICS 2, closed transition.

2.4 MULTISPEED ENCLOSED CONTROLLERS

- A. Multispeed Enclosed Controller: Match controller to motor type, application, and number of speeds; include the following accessories:
 - 1. Compelling relay to ensure that motor will start only at low speed.
 - 2. Accelerating relay to ensure properly timed acceleration through speeds lower than that selected.
 - 3. Decelerating relay to ensure automatically timed deceleration through each speed.

2.5 ENCLOSURES

- A. Description: Flush- or surface-mounting cabinets as indicated. NEMA 250, Type 1, unless otherwise indicated to comply with environmental conditions at installed location.
 - 1. Outdoor Locations: NEMA 250, Type 4X, stainless steel.
 - 2. Other Wet or Damp Indoor Locations: NEMA 250, Type 4X, stainless steel.

2.6 ACCESSORIES

- A. Devices shall be factory installed in controller enclosure, unless otherwise indicated.
- B. Push-to-test Red "Power Available" and Green "Running" non-incandescent pilot lights and Hand-Off-Automatic selector switches, NEMA ICS2, heavy-duty type.
- C. Control Relays: Two (2) NO/NC auxiliary contacts and adjustable time-delay relays, as required by automation and control sequences.
- D. Phase-Failure and Undervoltage Relays: Solid-state sensing circuit with isolated output contacts for hard-wired connection. Provide adjustable undervoltage setting.

2.7 FACTORY FINISHES

A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested enclosed controllers before shipping.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and surfaces to receive enclosed controllers for compliance with requirements, installation tolerances, and other conditions affecting performance.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Select features of each enclosed controller to coordinate with ratings and characteristics of supply circuit and motor; required control sequence; duty cycle of motor, controller, and load; and configuration of pilot device and control circuit affecting controller functions.
- B. Select horsepower rating of controllers to suit motor controlled.

3.3 INSTALLATION

- A. For control equipment at walls, bolt units to wall or mount on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Section 260529, "Hangers and Supports for Electrical Systems."
- B. Install freestanding equipment on concrete bases.
- C. Enclosed Controller Fuses: Install fuses in each fusible switch. Comply with requirements in Section 262813, "Fuses."
- D. Install Power Factor Correction Capacitors furnished under Division 23 with disconnects, overcurrent protection, wire, conduit and ground for capacitor enclosure, all in accordance with the recommendations of the capacitor manufacturer and the National Electric Code.

3.4 IDENTIFICATION

- A. Identify enclosed controller, components, and control wiring according to Section 260553, "Identification for Electrical Systems."
- 3.5 CONTROL WIRING INSTALLATION
 - A. Install wiring between enclosed controllers according to Section 260519, "Low-Voltage Electrical Power Conductors and Cables."
 - B. Bundle, train, and support wiring in enclosures.
 - C. Connect hand-off-automatic switch and other automatic-control devices where applicable.
 - 1. Connect selector switches to bypass only manual- and automatic-control devices that have no safety functions when switch is in hand position.
 - 2. Connect selector switches with enclosed controller circuit in both hand and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.6 CONNECTIONS

- A. Conduit installation requirements are specified in other Division 26 Section, 260533. Drawings indicate general arrangement of conduit, fittings, and specialties.
- B. Ground equipment according to Section 260526, "Grounding and Bonding for Electrical Systems."

3.7 FIELD QUALITY CONTROL

- A. Prepare for acceptance tests as follows:
 - 1. Test insulation resistance for each enclosed controller element, bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to perform the following:
 - 1. Inspect controllers, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
 - 2. Assist in field testing of equipment including pretesting and adjusting of solid-state controllers.
 - 3. Report results in writing.
- C. Testing Agency: Engage a qualified testing and inspecting agency to perform the following field tests and inspections and prepare test reports:
- D. Perform the following field tests and inspections and prepare test reports:
 - 1. Perform each electrical test and visual and mechanical inspection, except optional tests, stated in NETA ATS, "Motor Control Motor Starters." Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

3.8 ADJUSTING

A. Set field-adjustable switches and circuit-breaker trip ranges.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain enclosed controllers. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION

SECTION 263213.16

GASEOUS EMERGENCY ENGINE GENERATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes packaged engine generators for emergency use with the following features:
 - 1. Natural gas engine.
 - 2. Gaseous fuel system.
 - 3. Control and monitoring.
 - 4. Generator overcurrent and fault protection.
 - 5. Generator, exciter, and voltage regulator.
 - 6. Outdoor engine generator enclosure.
 - 7. Finishes.
- B. Related Requirements:
 - 1. Section 263600 "Transfer Switches" for transfer switches including sensors and relays to initiate automatic-starting and -stopping signals for engine generators.

1.3 DEFINITIONS

- A. EPS: Emergency power supply.
- B. EPSS: Emergency power supply system.
- C. Operational Bandwidth: The total variation from the lowest to highest value of a parameter over the range of conditions indicated, expressed as a percentage of the nominal value of the parameter.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 2. Include thermal damage curve for generator.
 - 3. Include time-current characteristic curves for generator protective device.
 - 4. Include fuel consumption in cubic feet per hour (cubic meters per hour) at 0.8 power factor at 0.5, 0.75, and 1.0 times generator capacity.

- 5. Include generator characteristics, including, but not limited to, kilowatt rating, efficiency, reactances, and short-circuit current capability.
- B. Shop Drawings:
 - 1. Include plans and elevations for engine generator and other components specified.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Identify fluid drain ports and clearance requirements for proper fluid drain.
 - 4. Design calculations for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
 - 5. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and supported equipment. Include base weights.
 - 6. Include diagrams for power, signal, and control wiring. Complete schematic, wiring, and interconnection diagrams showing terminal markings for EPS equipment and functional relationship between all electrical components.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer, manufacturer.
- B. Seismic Qualification Data: Certificates, for engine generator, accessories, and components, from manufacturer.
- C. Field quality-control reports.
- D. Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For packaged engine generators to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. List of tools and replacement items recommended to be stored at Project for ready access. Include part and drawing numbers, current unit prices, and source of supply.
 - b. Operating instructions laminated and mounted adjacent to generator location.
 - c. Training plan.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: One for every 10 of each type and rating, but no fewer than one of each.
 - 2. Indicator Lamps: Two for every six of each type used, but no fewer than two of each.
 - 3. Filters: One set each of lubricating oil, fuel, and combustion-air filters.
 - 4. Tools: Each tool listed by part number in operations and maintenance manual.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.
- B. Testing Agency Qualifications: Accredited by NETA.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.9 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of packaged engine generators and associated auxiliary components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five (5) years comprehensive warranty, from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide <u>Kohler Power</u> <u>Systems</u>; or a comparable product by one of the following:
 - 1. Cummins Power Generation.
 - 2. Generac Power Systems, Inc.
 - 3. MTU Onsite Energy Corporation.
- B. Source Limitations: Obtain packaged engine generators and auxiliary components from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Engine generator housing, engine generator, batteries, battery racks, silencers, sound attenuating equipment, accessories, and components shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Shake-table testing shall comply with ICC-ES AC156. Testing shall be performed with all fluids at worst-case normal levels.
 - 3. Component Importance Factor: 1.5.
- B. B11 Compliance: Comply with B11.19.
- C. NFPA Compliance:
 - 1. Comply with NFPA 37.
 - 2. Comply with NFPA 70.

- 3. Comply with NFPA 99.
- 4. Comply with NFPA 110 requirements for Level 1 EPSS.
- D. UL Compliance: Comply with UL 2200.
- E. Engine Exhaust Emissions: Certify EPA emissions
- F. Environmental Conditions: Engine generator system shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:
 - 1. Ambient Temperature: 41 to 104 deg F (5 to 40 deg C)
 - 2. Relative Humidity: Zero to 95 percent.
 - 3. Altitude: Sea level to 1000 feet (300 m).

2.3 ENGINE GENERATOR ASSEMBLY DESCRIPTION

- A. Factory-assembled and -tested, water-cooled engine, with brushless generator and accessories.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- C. Service Load: As indicated on Contract Documents.
- D. Power Factor: 0.8, lagging.
- E. Frequency: 60 Hz.
- F. Voltage: 480-V ac.
- G. Phase: Three-phase, four-wire wye.
- H. Induction Method: Turbocharged.
- I. Governor: Adjustable isochronous, with speed sensing.
- J. Mounting Frame: Structural-steel framework to maintain alignment of mounted components without depending on concrete foundation. Provide lifting attachments sized and spaced to prevent deflection of base during lifting and moving.
 - 1. Rigging Diagram: Inscribed on metal plate permanently attached to mounting frame to indicate location and lifting capacity of each lifting attachment and engine generator center of gravity.
- K. Capacities and Characteristics:
 - 1. Power Output Ratings: Nominal ratings as indicated at 0.8 power factor excluding power required for the continued and repeated operation of the unit and auxiliaries, with capacity as required to operate as a unit as evidenced by records of prototype testing.
 - 2. Nameplates: For each major system component to identify manufacturer's name and address, and model and serial number of component.
- L. Engine Generator Performance:

- 1. Steady-State Voltage Operational Bandwidth: 3 percent of rated output voltage, from no load to full load.
- 2. Transient Voltage Performance: Not more than 20 percent variation for 50 percent stepload increase or decrease. Voltage shall recover and remain within the steady-state operating band within three seconds.
- 3. Steady-State Frequency Operational Bandwidth: 0.5 percent of rated frequency, from no load to full load.
- 4. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
- 5. Transient Frequency Performance: Less than 5 percent variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within five seconds.
- 6. Output Waveform: At no load, harmonic content measured line to line or line to neutral shall not exceed 5 percent total and 3 percent for single harmonics. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.
- 7. Sustained Short-Circuit Current: For a three-phase, bolted short circuit at system output terminals, system shall supply a minimum of 250 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to generator system components.
- 8. Start Time: Comply with NFPA 110, Type 10, system requirements.

2.4 ENGINE

- A. Fuel: Natural gas.
- B. Rated Engine Speed: 1800 rpm.
- C. Lubrication System: Engine or skid mounted.
 - 1. Filter and Strainer: Rated to remove 90 percent of particles 5 micrometers and smaller while passing full flow.
 - 2. Thermostatic Control Valve: Control flow in system to maintain optimum oil temperature. Unit shall be capable of full flow and is designed to be fail-safe.
 - 3. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.
- D. Jacket Coolant Heater: Electric-immersion type, factory installed in coolant jacket system. Comply with NFPA 110 requirements for Level 1 equipment for heater capacity and with UL 499.
- E. Cooling System: Closed loop, liquid cooled, with radiator factory mounted on engine generator mounting frame and integral engine-driven coolant pump.
 - 1. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.
 - 2. Size of Radiator: Adequate to contain expansion of total system coolant, from cold start to 110 percent load condition.
 - 3. Expansion Tank: Constructed of welded steel plate and rated to withstand maximum closed-loop coolant-system pressure for engine used. Equip with gage glass and petcock.

- 4. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.
- 5. Coolant Hose: Flexible assembly with inside surface of nonporous rubber and outer covering of aging-, UV-, and abrasion-resistant fabric.
 - a. Rating: 50-psig (345-kPa) maximum working pressure with coolant at 180 deg F (82 deg C), and noncollapsible under vacuum.
 - b. End Fittings: Flanges or steel pipe nipples with clamps to suit piping and equipment connections.
- F. Muffler/Silencer: Critical type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements.
 - 1. Minimum sound attenuation of 25 dB at 500 Hz.
- G. Air-Intake Filter: Heavy-duty, engine-mounted air cleaner with replaceable dry-filter element and "blocked filter" indicator.
- H. Starting System: 24-V electric, with negative ground.
 - 1. Components: Sized so they are not damaged during a full engine-cranking cycle, with ambient temperature at maximum specified in "Performance Requirements" Article.
 - 2. Cranking Motor: Heavy-duty unit that automatically engages and releases from engine flywheel without binding.
 - 3. Cranking Cycle: As required by NFPA 110 for system level specified.
 - 4. Battery: Nickel cadmium, with capacity within ambient temperature range specified in "Performance Requirements" Article to provide specified cranking cycle at least twice without recharging.
 - 5. Battery Cable: Size as recommended by engine manufacturer for cable length indicated. Include required interconnecting conductors and connection accessories.
 - 6. Battery Compartment: Factory fabricated of metal with acid-resistant finish and thermal insulation. Thermostatically controlled heater shall be arranged to maintain battery above 50 deg F (10 deg C) regardless of external ambient temperature within range specified in "Performance Requirements" Article. Include accessories required to support and fasten batteries in place. Provide ventilation to exhaust battery gases.
 - 7. Battery-Charging Alternator: Factory mounted on engine with solid-state voltage regulation and 35-A minimum continuous rating.
 - 8. Battery Charger: Current-limiting, automatic-equalizing and float-charging type designed for nickel-cadmium batteries. Unit shall comply with UL 1236 and include the following features:
 - a. Operation: Equalizing-charging rate of 10 A shall be initiated automatically after battery has lost charge until an adjustable equalizing voltage is achieved at battery terminals. Unit shall then be automatically switched to a lower float-charging mode and shall continue to operate in that mode until battery is discharged again.
 - b. Automatic Temperature Compensation: Adjust float and equalize voltages for variations in ambient temperature from minus 40 to 140 deg F (minus 40 to plus 60 deg C) to prevent overcharging at high temperatures and undercharging at low temperatures.
 - c. Automatic Voltage Regulation: Maintain constant output voltage regardless of input voltage variations up to plus or minus 10 percent.
 - d. Ammeter and Voltmeter: Flush mounted in door. Meters shall indicate charging rates.
 - e. Safety Functions: Sense abnormally low battery voltage and close contacts providing low battery voltage indication on control and monitoring panel. Sense

high battery voltage and loss of ac input or dc output of battery charger. Either condition shall close contacts that provide a battery-charger malfunction indication at system control and monitoring panel.

f. Enclosure and Mounting: NEMA 250, Type 1, wall-mounted cabinet.

2.5 GASEOUS FUEL SYSTEM

- A. Natural Gas Piping: Comply with requirements in Section 231123 "Facility Natural Gas Piping."
- B. Gas Train: Comply with NFPA 37.
- C. Engine Fuel System:
 - 1. Natural Gas, Vapor-Withdrawal System:
 - a. Carburetor.
 - b. Secondary Gas Regulators: One for each fuel type, with atmospheric vents piped to building exterior.
 - c. Fuel-Shutoff Solenoid Valves: NRTL-listed, normally closed, safety shutoff valves; one for each fuel source.
 - 2. Fuel Filters: One for each fuel type.
 - 3. Manual Fuel Shutoff Valves: One for each fuel type.
 - 4. Flexible Fuel Connectors: Minimum one for each fuel connection.
 - 5. Fuel change gas pressure switch.

2.6 CONTROL AND MONITORING

- A. Automatic Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in one or more separate automatic transfer switches initiate starting and stopping of engine generator. When mode-selector switch is switched to the on position, engine generator starts. The off position of same switch initiates engine generator shutdown. When engine generator is running, specified system or equipment failures or derangements automatically shut down engine generator and initiate alarms.
- B. Provide minimum run-time control set for 15 minutes, with override only by operation of a remote emergency-stop switch.
- C. Comply with UL 508A.
- D. Configuration: Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common wall-mounted control and monitoring panel. Panel shall be powered from the engine generator battery.
- E. Remote Alarm Annunciator: Comply with NFPA 99. An LED indicator light labeled with proper alarm conditions shall identify each alarm event, and a common audible signal shall sound for each alarm condition. Silencing switch in face of panel shall silence signal without altering visual indication. Connect so that after an alarm is silenced, clearing of initiating condition will reactivate alarm until silencing switch is reset. Cabinet and faceplate are surface- or flushmounting type to suit mounting conditions indicated.
 - 1. Overcrank alarm.

- 2. Coolant low-temperature alarm.
- 3. High engine temperature pre-alarm.
- 4. High engine temperature alarm.
- 5. Low lube oil pressure alarm.
- 6. Overspeed alarm.
- 7. Low-fuel main tank alarm.
- 8. Low coolant level alarm.
- 9. Low-cranking voltage alarm.
- 10. Contacts for local and remote common alarm.
- 11. Audible-alarm silencing switch.
- 12. Air shutdown damper when used.
- 13. Run-Off-Auto switch.
- 14. Control switch not in automatic position alarm.
- 15. Lamp test.
- 16. Low-cranking voltage alarm.
- 17. Generator overcurrent-protective-device not-closed alarm.
- F. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator unless otherwise indicated.
- G. Remote Emergency-Stop Switch: Flush; wall mounted unless otherwise indicated; and labeled. Push button shall be protected from accidental operation.

2.7 GENERATOR OVERCURRENT AND FAULT PROTECTION

- A. Overcurrent protective devices for the entire EPSS shall be coordinated to optimize selective tripping when a short circuit occurs. Coordination of protective devices shall consider both utility and EPSS as the voltage source.
 - 1. Overcurrent protective devices for the EPSS shall be accessible only to authorized personnel.
- B. Generator Circuit Breaker: Molded-case, electronic-trip type; 100 percent rated; complying with UL 489.
 - 1. Tripping Characteristics: Adjustable long-time and short-time delay and instantaneous.
 - 2. Trip Settings: Selected to coordinate with generator thermal damage curve.
 - 3. Shunt Trip: Connected to trip breaker when engine generator is shut down by other protective devices.
 - 4. Mounting: Adjacent to or integrated with control and monitoring panel.
- C. Generator Protector: Microprocessor-based unit shall continuously monitor current level in each phase of generator output, integrate generator heating effect over time, and predict when thermal damage of alternator will occur. When signaled by generator protector or other engine generator protective devices, a shunt-trip device in the generator disconnect switch shall open the switch to disconnect the generator from load circuits. Protector performs the following functions:
 - 1. Initiates a generator overload alarm when generator has operated at an overload equivalent to 110 percent of full-rated load for 60 seconds. Indication for this alarm is integrated with other engine generator malfunction alarms. Contacts shall be available for load shed functions.
- 2. Under single- or three-phase fault conditions, regulates generator to 300 percent of rated full-load current for up to 10 seconds.
- 3. As overcurrent heating effect on the generator approaches the thermal damage point of the unit, protector switches the excitation system off, opens the generator disconnect device, and shuts down the engine generator.
- 4. Senses clearing of a fault by other overcurrent devices and controls recovery of rated voltage to avoid overshoot.
- D. Ground-Fault Indication: Comply with NFPA 70 Article 700, "Emergency System" signals for ground fault.
 - 1. Indicate ground fault with other engine generator alarm indications.

2.8 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

- A. Comply with NEMA MG 1.
- B. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.
- C. Electrical Insulation: Class H or Class F.
- D. Stator-Winding Leads: Brought out to terminal box to permit future reconnection for other voltages if required.
- E. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, overspeed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.
- F. Enclosure: Dripproof.
- G. Instrument Transformers: Mounted within generator enclosure.
- H. Voltage Regulator: Solid-state type, separate from exciter, providing performance as specified and as required by NFPA 110.
 - 1. Adjusting Rheostat on Control and Monitoring Panel: Provide plus or minus 5 percent adjustment of output-voltage operating band.
- I. Strip Heater: Thermostatically controlled unit arranged to maintain stator windings above dew point.
- J. Windings: Two-thirds pitch stator winding and fully linked amortisseur winding.

2.9 OUTDOOR ENGINE GENERATOR ENCLOSURE

- A. Description: Vandal-resistant, sound-attenuating, weatherproof steel housing. Multiple panels shall be lockable and provide adequate access to components requiring maintenance. Instruments and control shall be mounted within enclosure.
 - 1. Sound Attenuation Level: 75 dBA maximum sound level measured on all four sides of enclosure, at 23 feet (7 meters) with generator running at full load.

- B. Structural Design and Anchorage: Comply with ASCE/SEI 7 for wind loads up to 100 mph (160 km/h).
- C. Seismic Design: Comply with seismic requirements in Section 260548.16 "Seismic Controls for Electrical Systems."
- D. Hinged Doors: With padlocking provisions.
- E. Space Heater: Thermostatically controlled and sized to prevent condensation.
- F. Lighting: Provide weather-resistant LED lighting with **30 fc (330 lx)** average maintained.
- G. Thermal Insulation: Manufacturer's standard materials and thickness selected in coordination with space heater to maintain winter interior temperature within operating limits required by engine generator components.
- H. Muffler Location: Within enclosure.
- I. Engine-Cooling Airflow through Enclosure: Maintain temperature rise of system components within required limits when unit operates at 110 percent of rated load for two hours with ambient temperature at top of range specified in system service conditions.
 - 1. Louvers: Fixed-engine, cooling-air inlet and discharge. Stormproof and drainable louvers prevent entry of rain and snow.
- J. Interior Lights with Switch: Factory-wired, vaporproof luminaires within housing; arranged to illuminate controls and accessible interior. Arrange for external electrical connection.
 - 1. AC lighting system and connection point for operation when remote source is available.
 - 2. DC lighting system for operation when remote source and generator are both unavailable.
- K. Convenience Outlets: Factory-wired, GFCI. Arrange for external electrical connection.

2.10 FINISHES

A. Indoor and Outdoor Enclosures and Components: Manufacturer's standard finish over corrosion-resistant pretreatment and compatible primer.

2.11 SOURCE QUALITY CONTROL

- A. Prototype Testing: Factory test engine generator using same engine model, constructed of identical or equivalent components and equipped with identical or equivalent accessories.
 - 1. Tests: Comply with NFPA 110, Level 1 Energy Converters and with IEEE 115.

PART 3 - EXECUTION

3.1 EXAMINATION

- Α. Examine areas, equipment bases, and conditions, with Installer present, for compliance with requirements for installation and other conditions affecting packaged engine generator performance.
- Β. Examine roughing-in for piping systems and electrical connections to verify actual locations of connections before packaged engine generator installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- Α. Comply with NECA 1 and NECA 404.
- Comply with packaged engine generator manufacturers' written installation and alignment Β. instructions and with NFPA 110.
- C. Equipment Mounting:
 - 1. Install packaged engine generators on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
 - 2 Coordinate size and location of concrete bases for packaged engine generators and remote radiators mounted on grade. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
- Install packaged engine generator to provide access, without removing connections or D. accessories, for periodic maintenance.
- E. Cooling System: Install Schedule 40 black steel piping with welded joints for cooling water piping between engine generator and heat exchanger. Piping materials and installation requirements are specified in Section 232113 "Hydronic Piping."
 - 1. Install isolating thimbles where exhaust piping penetrates combustible surfaces. Provide a minimum of 9 inches (225 mm) of clearance from combustibles.
 - 2 Insulate cooling-system piping and components according to requirements in Section 230719 "HVAC Piping Insulation."
- F. Drain Piping: Install condensate drain piping to muffler drain outlet with a shutoff valve, stainless-steel flexible connector, and Schedule 40 black steel pipe with welded joints.
- G. Gaseous Fuel Piping:
 - Natural gas piping, valves, and specialties for gas distribution are specified in 1. Section 231123 "Facility Natural Gas Piping."
 - 2. LP gas piping, valves, and specialties for gas piping are specified in Section 231126 "Facility Liquefied-Petroleum Gas Piping."
- Η. Electrical Wiring: Install electrical devices furnished by equipment manufacturers but not specified to be factory mounted.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping and specialties.
- B. Connect fuel, cooling-system, and exhaust-system piping adjacent to packaged engine generator to allow service and maintenance.
- C. Connect engine exhaust pipe to engine with flexible connector.
- D. Gaseous Fuel Connections:
 - 1. Connect fuel piping to engines with a gate valve and union and flexible connector.
 - 2. Install manual shutoff valve in a remote location to isolate gaseous fuel supply to the generator.
 - 3. Vent gas pressure regulators outside building a minimum of 60 inches (1500 mm) from building openings.
- E. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- F. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Provide a minimum of one 90-degree bend in flexible conduit routed to the engine generator from a stationary element.
- G. Balance single-phase loads to obtain a maximum of 10 percent unbalance between any two phases.

3.4 IDENTIFICATION

- A. Identify system components according to Section 230553 "Identification for HVAC Piping and Equipment" and Section 260553 "Identification for Electrical Systems."
- B. Install a sign indicating the generator neutral is bonded to the main service neutral at the main service location.

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections with the assistance of a factory-authorized service representative.
- C. Tests and Inspections:
 - 1. Perform tests recommended by manufacturer and each visual and mechanical inspection and electrical and mechanical test listed in first two subparagraphs below, as specified in NETA ATS. Certify compliance with test parameters.
 - a. Visual and Mechanical Inspection:
 - 1) Compare equipment nameplate data with Drawings and the Specifications.
 - 2) Inspect physical and mechanical condition.

- 3) Inspect anchorage, alignment, and grounding.
- 4) Verify that the unit is clean.
- b. Electrical and Mechanical Tests:
 - 1) Perform insulation-resistance tests according to IEEE 43.
 - a) Machines Larger Than 200 hp (150 kW): Test duration shall be 10 minutes. Calculate polarization index.
 - b) Machines 200 hp (150 kW) or Less: Test duration shall be one minute. Calculate the dielectric-absorption ratio.
 - 2) Test protective relay devices.
 - 3) Verify phase rotation, phasing, and synchronized operation as required by the application.
 - 4) Functionally test engine shutdown for low oil pressure, overtemperature, overspeed, and other protection features as applicable.
 - 5) Perform vibration test for each main bearing cap.
 - 6) Conduct performance test according to NFPA 110.
 - 7) Verify correct functioning of the governor and regulator.
- 2. NFPA 110 Acceptance Tests: Perform tests required by NFPA 110 that are additional to those specified here including, but not limited to, single-step full-load pickup test.
- 3. Battery Tests: Equalize charging of battery cells according to manufacturer's written instructions. Record individual cell voltages.
 - a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.
 - b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.
 - c. Verify acceptance of charge for each element of the battery after discharge.
 - d. Verify that measurements are within manufacturer's specifications.
- 4. Battery-Charger Tests: Verify specified rates of charge for both equalizing and floatcharging conditions.
- 5. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine generator system before and during system operation. Check for air, exhaust, and fluid leaks.
- 6. Exhaust-System Back-Pressure Test: Use a manometer with a scale exceeding 40-inch wg (120 kPa). Connect to exhaust line close to engine exhaust manifold. Verify that back pressure at full-rated load is within manufacturer's written allowable limits for the engine.
- 7. Exhaust Emissions Test: Comply with applicable government test criteria.
- 8. Voltage and Frequency Transient Stability Tests: Use recording oscilloscope to measure voltage and frequency transients for 50 and 100 percent step-load increases and decreases, and verify that performance is as specified.
- 9. Harmonic-Content Tests: Measure harmonic content of output voltage at 25 and 100 percent of rated linear load. Verify that harmonic content is within specified limits.
- Noise Level Tests: Measure A-weighted level of noise emanating from engine generator installation, including engine exhaust and cooling-air intake and discharge, at four locations 25 feet (8 m) from edge of the generator enclosure, and compare measured levels with required values.
- D. Coordinate tests with tests for transfer switches and run them concurrently.

- E. Test instruments shall have been calibrated within the past 12 months, traceable to NIST Calibration Services, and adequate for making positive observation of test results. Make calibration records available for examination on request.
- F. Leak Test: After installation, charge exhaust, coolant, and fuel systems and test for leaks. Repair leaks and retest until no leaks exist.
- G. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation for generator and associated equipment.
- H. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- I. Remove and replace malfunctioning units and retest as specified above.
- J. Retest: Correct deficiencies identified by tests and observations, and retest until specified requirements are met.
- K. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation resistances, time delays, and other values and observations. Attach a label or tag to each tested component indicating satisfactory completion of tests.
- L. Infrared Scanning: After Substantial Completion, but not more than 60 days after final acceptance, perform an infrared scan of each power wiring termination and each bus connection while running with maximum load. Remove all access panels, so terminations and connections are accessible to portable scanner.
 - 1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan 11 months after date of Substantial Completion.
 - 2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - 3. Record of Infrared Scanning: Prepare a certified report that identifies terminations and connections checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged engine generators.

END OF SECTION 263213.16

SECTION 263600

TRANSFER SWITCHES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes automatic transfer switches rated 600 V and less, including the following:
 - 1. Automatic Transfer Switches

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for transfer switches.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and accessories.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, details showing minimum clearances, conductor entry provisions, gutter space, and installed features and devices.
 - 2. Include material lists for each switch specified.
 - 3. Single-Line Diagram: Show connections between transfer switch, power sources, and load; and show interlocking provisions for each combined transfer switch and bypass/isolation switch.
 - 4. Riser Diagram: Show interconnection wiring between transfer switches, bypass/isolation switches, annunciators, and control panels.

1.4 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Data: Certificates, for transfer switches, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Features and operating sequences, both automatic and manual.
 - b. List of all factory settings of relays; provide relay-setting and calibration instructions, including software, where applicable.

1.6 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of transfer switch or transfer switch components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Three years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NEMA ICS 1.
- C. Comply with NFPA 99.
- D. Comply with NFPA 110.
- E. Comply with UL 1008 unless requirements of these Specifications are stricter.
- F. Indicated Current Ratings: Apply as defined in UL 1008 for continuous loading and total system transfer, including tungsten filament lamp loads not exceeding 30 percent of switch ampere rating, unless otherwise indicated.
- G. Tested Fault-Current Closing and Short-Circuit Ratings: Adequate for duty imposed by protective devices at installation locations in Project under the fault conditions indicated, based on testing according to UL 1008.
- H. Repetitive Accuracy of Solid-State Controls: All settings shall be plus or minus 2 percent or better over an operating temperature range of minus 20 to plus 70 deg C.
- I. Resistance to Damage by Voltage Transients: Components shall meet or exceed voltage-surge withstand capability requirements when tested according to IEEE C62.62. Components shall meet or exceed voltage-impulse withstand test of NEMA ICS 1.

- J. Electrical Operation: Accomplish by a nonfused, momentarily energized solenoid or electricmotor-operated mechanism. Switches for emergency or standby purposes shall be mechanically and electrically interlocked in both directions to prevent simultaneous connection to both power sources unless closed transition.
- K. Neutral Switching: Where four-pole switches are indicated, provide neutral pole switched simultaneously with phase poles.
- L. Neutral Terminal: Solid and fully rated unless otherwise indicated.
- M. Annunciation, Control, and Programming Interface Components: Devices at transfer switches for communicating with remote programming devices, annunciators, or annunciator and control panels shall have communication capability matched with remote device.
- N. Factory Wiring: Train and bundle factory wiring and label, consistent with Shop Drawings, by color-code or by numbered or lettered wire and cable shrinkable sleeve markers at terminations. Color-coding and wire and cable markers are specified in Section 260553 "Identification for Electrical Systems."
 - 1. Designated Terminals: Pressure type, suitable for types and sizes of field wiring indicated.
 - 2. Power-Terminal Arrangement and Field-Wiring Space: Suitable for top, side, or bottom entrance of feeder conductors as indicated.
 - 3. Control Wiring: Equipped with lugs suitable for connection to terminal strips.
 - 4. Accessible via front access.
- O. Enclosures: General-purpose NEMA 250, Type 1, complying with NEMA ICS 6 and UL 508, unless otherwise indicated.

2.2 CONTACTOR-TYPE AUTOMATIC TRANSFER SWITCHES

- A. Basis-of-Design Product: Subject to compliance with requirements, provide <u>Kohler Power</u> <u>Systems</u>; or a comparable product by one of the following:
 - 1. Caterpillar, Inc.; Electric Power Division.
 - 2. Cummins Power Generation.
 - 3. Eaton.
 - 4. Emerson.
 - 5. Generac Power Systems, Inc.
 - 6. General Electric Company.
 - 7. MTU Onsite Energy Corporation.
 - 8. Russelectric, Inc.
- B. Comply with Level 1 equipment according to NFPA 110.
- C. Switch Characteristics: Designed for continuous-duty repetitive transfer of full-rated current between active power sources.
 - 1. Limitation: Switches using molded-case switches or circuit breakers or insulated-case circuit-breaker components are unacceptable.
 - 2. Switch Action: Double throw; mechanically held in both directions.

- 3. Contacts: Silver composition or silver alloy for load-current switching. Contactor-style automatic transfer-switch units, rated 600 A and higher, shall have separate arcing contacts.
- 4. Conductor Connectors: Suitable for use with conductor material and sizes.
- 5. Material: Hard-drawn copper, 98 percent conductivity.
- 6. Main and Neutral Lugs: Mechanical type.
- 7. Ground Lugs and Bus-Configured Terminators: Compression type.
- 8. Ground bar.
- 9. Connectors shall be marked for conductor size and type according to UL 1008.
- D. Automatic Delayed-Transition Transfer Switches: Pauses or stops in intermediate position to momentarily disconnect both sources, with transition controlled by programming in the automatic transfer-switch controller. Interlocked to prevent the load from being closed on both sources at the same time.
 - 1. Adjustable Time Delay: For override of normal-source voltage sensing to delay transfer and engine start signals for alternative source. Adjustable from zero to six seconds, and factory set for one second.
 - 2. Sources shall be mechanically and electrically interlocked to prevent closing both sources on the load at the same time.
 - 3. Fully automatic break-before-make operation with center off position.
 - 4. Fully automatic break-before-make operation with transfer when two sources have near zero phase difference.
- E. Signal-Before-Transfer Contacts: A set of normally open/normally closed dry contacts operates in advance of retransfer to normal source. Interval shall be adjustable from 1 to 30 seconds.
- F. Digital Communication Interface: Matched to capability of remote annunciator or annunciator and control panel.
- G. Automatic Transfer-Switch Controller Features:
 - 1. Controller operates through a period of loss of control power.
 - 2. Undervoltage Sensing for Each Phase of Normal and Alternate Source: Sense low phase-to-ground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100 percent of nominal, and dropout voltage shall be adjustable from 75 to 98 percent of pickup value. Factory set for pickup at 90 percent and dropout at 85 percent.
 - 3. Time Delay for Retransfer to Normal Source: Adjustable from zero to 30 minutes, and factory set for 10 minutes. Override shall automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored.
 - 4. Test Switch: Simulate normal-source failure.
 - 5. Switch-Position Pilot Lights: Indicate source to which load is connected.
 - 6. Source-Available Indicating Lights: Supervise sources via transfer-switch normal- and emergency-source sensing circuits.
 - a. Normal Power Supervision: Green light with nameplate engraved "Normal Source Available."
 - b. Emergency Power Supervision: Red light with nameplate engraved "Emergency Source Available."
 - 7. Unassigned Auxiliary Contacts: Two normally open, single-pole, double-throw contacts for each switch position, rated 10 A at 240-V ac.
 - 8. Transfer Override Switch: Overrides automatic retransfer control so transfer switch will remain connected to emergency power source regardless of condition of normal source. Pilot light indicates override status.

- 9. Engine Starting Contacts: One isolated and normally closed, and one isolated and normally open; rated 10 A at 32-V dc minimum.
- 10. Engine Shutdown Contacts: Instantaneous; shall initiate shutdown sequence at remote engine-generator controls after retransfer of load to normal source.
- 11. Engine Shutdown Contacts: Time delay adjustable from zero to five minutes, and factory set for five minutes. Contacts shall initiate shutdown at remote engine-generator controls after retransfer of load to normal source.
- 12. Engine-Generator Exerciser: Solid-state, programmable-time switch starts engine generator and transfers load to it from normal source for a preset time, then retransfers and shuts down engine after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from 7 to 30 days. Running periods shall be adjustable from 10 to 30 minutes. Factory settings shall be for 7-day exercise cycle, 20-minute running period, and 5-minute cool-down period. Exerciser features include the following:
 - a. Exerciser Transfer Selector Switch: Permits selection of exercise with and without load transfer.
 - b. Push-button programming control with digital display of settings.
 - c. Integral battery operation of time switch when normal control power is unavailable.

2.3 SOURCE QUALITY CONTROL

- A. Factory Tests: Test and inspect components, assembled switches, and associated equipment according to UL 1008. Ensure proper operation. Check transfer time and voltage, frequency, and time-delay settings for compliance with specified requirements. Perform dielectric strength test complying with NEMA ICS 1.
- B. Prepare test and inspection reports.
 - 1. For each of the tests required by UL 1008, performed on representative devices, for emergency systems. Include results of test for the following conditions:
 - a. Overvoltage.
 - b. Undervoltage.
 - c. Loss of supply voltage.
 - d. Reduction of supply voltage.
 - e. Alternative supply voltage or frequency is at minimum acceptable values.
 - f. Temperature rise.
 - g. Dielectric voltage-withstand; before and after short-circuit test.
 - h. Overload.
 - i. Contact opening.
 - j. Endurance.
 - k. Short circuit.
 - I. Short-time current capability.
 - m. Receptacle withstand capability.
 - n. Insulating base and supports damage.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Floor-Mounting Switch: Anchor to floor by bolting.

- 1. Install transfer switches on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
- 2. Comply with requirements for seismic control devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- 3. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases.
- 4. Provide workspace and clearances required by NFPA 70.
- B. Annunciator and Control Panel Mounting: Flush in wall unless otherwise indicated.
- C. Identify components according to Section 260553 "Identification for Electrical Systems."
- D. Set field-adjustable intervals and delays, relays, and engine exerciser clock.
- E. Comply with NECA 1.

3.2 CONNECTIONS

- A. Wiring to Remote Components: Match type and number of cables and conductors to generator sets, control, and communication requirements of transfer switches as recommended by manufacturer. Increase raceway sizes at no additional cost to Owner if necessary to accommodate required wiring.
- B. Wiring Method: Install cables in raceways and cable trays except within electrical enclosures. Conceal raceway and cables except in unfinished spaces.
 - 1. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- C. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii.
- D. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- E. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- F. Route and brace conductors according to manufacturer's written instructions. Do not obscure manufacturer's markings and labels.
- G. Brace and support equipment according to Section 260548.16 "Seismic Controls for Electrical Systems."
- H. Final connections to equipment shall be made with liquidtight, flexible metallic conduit no more than 18 inches (457 mm) in length.

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Manufacturer's representative shall conduct all recommended tests and certify emergency power system is free from defects and works under normal operating conditions.

3.4 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain transfer switches and related equipment.
- B. Training shall include testing ground-fault protective devices and instructions to determine when the ground-fault system shall be retested. Include instructions on where ground-fault sensors are located and how to avoid negating the ground-fault protection scheme during testing and circuit modifications.
- C. Coordinate this training with that for generator equipment.

END OF SECTION 263600

SECTION 264313

SURGE PROTECTION DEVICES (SPD)

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes field mounted SPDs for low-voltage (120V to 600V) power distribution and control equipment.
- 1.2 LISTING REQUIREMENTS
 - A. UL 1449 Third Edition listed.
- 1.3 SUBMITTALS
 - A. Drawings: Electrical and mechanical drawings shall be provided by the manufacturer which show unit dimensions, weights, mounting provisions, connection notes, wire size and wiring diagram.
 - B. Equipment Manual: The manufacturer shall furnish an installation manual with installation notes, start-up and operating instructions for the specified SPD. Installation instructions shall clearly state whether the system requires an external overcurrent device to maintain the system's UL 1449 listing.
 - C. Verification that all SPD are UL tested and labeled with 20kA (In) nominal discharge rating for compliance to UL96A Lightning Protection Master Label and NFPA 780.
 - D. UL 1449 stipulation for fused SPD The manufacturer's authorized representative is required to submit the following:
 - 1. Certify that the SPD is UL 1449 listed (UL Card) with UL Card.
 - 2. Indicate the type of internal or external fusing that is incorporated in the SPD and what impact the fusing has on the performance of the device with respect to surge capacity and clamping levels.
 - E. Manufacturer must provide independent testing on repetitive capability and maximum surge current rating of service entrance suppressor units. This shall be performed at a nationally recognized lab not affiliated with the manufacturer.
 - 1. Single pulse surge current capacity: single pulse surge current tested in a mode at rated surge currents. Single pulse surge current capacities of 200,000 A or less per mode are established by single pulse testing in a mode.
 - Single pulse surge current capacity test: an initial UL 1449 defined as 1.2 x 50µs, 6000V open circuit voltage waveform and an 8 x 20µs, 500A and 3kA short circuit current waveform is applied to benchmark the unit's suppression voltage.
 - 3. A single pulse surge of maximum rated surge current (for units rated over 200,000A per mode, components or sub-assemblies are tested) magnitude with an approximated 8 x 20µs waveform is then applied. To complete the test, another UL 1449 surge shall be applied to verify the unit's survival. Survival is achieved if the suppression voltage measured from the two UL1449 surges does not vary by more than 10%.
 - F. Minimum Repetitive Surge Current Capacity.

- 1. Service entrance suppressor units should be tested repetitively to verify repetitive capacity.
- 2. Minimum Repetitive Surge Current Capacity Test:
 - a. An initial UL 1449 surge defined as 1.2 x 50µs, 6000V open circuit voltage waveform and an 8 x 20µs, 500A and 3kA short circuit current waveform is applied to benchmark the unit's suppression voltage.
 - b. A repetitive number of ANSI/IEEE C62.41.2-2002 (Category C3) surges defined as a 1.2 x 50µs 10kV or 20kV open circuit voltage waveform and an 8 x 20µs 10,000A short circuit current waveform are then applied at one minute intervals.
 - c. To complete the test, another UL 1449 surge shall be applied to verify the unit's survival.
- 3. Survival is achieved if the suppression voltage measured from the two UL 1449 surges does not vary by more than 10%.
- 4. Proof of such testing shall be the test log generated by the surge generator.
- G. Short Circuit Fuse Testing.
 - 1. Each design configuration shall be short circuit tested in accordance with the type of fusing utilized in the suppression path.
 - 2. Short Circuit Fuse Test:
 - a. Testing shall include application of a sustained overvoltage that causes the unit to enter a bolted fault condition.
 - b. This bolted fault condition shall occur with the full rated AIC current of the fuse available.
 - 3. The fuse shall fail in a safe manner with no physical or structural damage to the unit and any failure shall be self-contained within the unit.
- H. Surge Current Fuse Testing.
 - 1. Each design configuration shall be surge tested with fusing in series to verify that a transient of maximum surge current capacity magnitude is fully suppressed without fuse failure, operation or degradation.
- I. Service Entrance SPD must be subjected to a series of waveforms as described in IEEE C62.41.2-2002. Clamping voltage measurements were taken throughout the tests to evaluate any deviations in performance as a result of the surges. Injected surges included the 1.2/50µs, 8/20µs waveforms at levels of 6kV/500A for bench marking, and high current 10/1000µs surges at 1.5, 3.1, 3.6 and 6.2 kA levels.

1.4 STANDARDS

- A. UL 1449 3rd Edition. Underwriters laboratories safety standard for Surge Protection Devices.
- B. NEC Article 285. National electrical code 2008 rev.
- C. NFPA 780. STANDARD FOR THE INSTALLATION OF LIGHTNING PROTECTION SYSTEMS.
- D. IEEE (Institute of Electrical and Electronic Engineering Inc.) C62.41.1 and C62.41.2 2002 rev. IEEE C62.45 – 2002 rev IEEE Std. 1100 "The Emerald Book" Section 8.4.2.5

- E. CBEMA (ITIC) and IEC (Computer Business Equipment Manufacturers Association or Information Technology Industry Council and International Electrotechnical Commission define clamping voltage tolerance guidelines for sensitive equipment)
- F. All manufacturers must comply with above listed standards and any additions current revisions of industry standards. All products that do not comply with current industry standards will not be accepted.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain all suppression devices and accessories through one source from a single manufacturer.

1.6 PROJECT CONDITIONS

- A. Placing into Service: Do not energize or connect service entrance equipment, panelboards, control terminals, or data terminals to their sources until the surge protective devices are installed and connected.
- B. Each protection device shall have a capacitive filtering system connected in each Line-to-Neutral (L \rightarrow N)(Wye) mode or Line to Line (L \rightarrow L)(Wye or Delta) mode to provide EMI/RFI noise attenuation.
- C. Protection modes: The SPD shall have 10 Dedicated Modes of Protection including Direct Line to Line. Provide (3) three Line to Neutral (L \rightarrow N), (3) three Line-to-Ground (L \rightarrow G), (3) three Line-to-Line (L \rightarrow L) and (1) one Neutral-to-Ground (N \rightarrow G) protection.
- D. Service Conditions: Rate surge protective devices for continuous operation under the following conditions, unless otherwise indicated:
 - 1. Maximum Continuous Operating Voltage (MCOV): Should be tested to 115% per UL 1449 3rd.
 - 2. Operating Temperature: 0 to 50 deg F.
 - 3. Humidity: 0 to 95 percent, noncondensing.
 - 4. Altitude: Less than 12,000 feet above sea level.

1.7 COORDINATION

- A. Coordinate location of field-mounted surge suppressors to allow adequate clearances for maintenance.
- B. All devices must be installed on the load side of the facility after the first overcurrent protection or disconnect.
- C. Products shall be installed external to service, distribution, and branch panel equipment. All SPDs must have the same or greater AIC, Interrupting, or Fault rating of the equipment the SPD is protecting.
- D. Coordinate surge protective devices with Division 16 Section "Electrical Power Monitoring and Control."

1.8 WARRANTY

A. General Warranty: Special warranties specified in this article shall not deprive owner of other rights owner may have under other provisions of the Contract Documents and shall be in

addition to, and run concurrent with, other warranties made by contractor under requirements of the Contract Documents.

B. Manufacturer shall provide a product warranty for a period of not less than twenty-five (25) years from date of installation. Warranty shall cover unlimited replacement of SPD or modules during the warranty period. Those firms responding to this specification shall provide proof that they have been regularly engaged in the design, manufacturing and testing of SPD for not less than thirty (30) years.

PART 2 - PRODUCTS

- 2.1 SERVICE ENTRANCE SUPPRESSORS
 - A. Available Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Surge Suppression, Inc
 - b. LEA International Inc
 - c. Current Technology
 - d. Liebert
 - e. Advanced Protection Technologies
 - B. SPD shall be a multi-stage parallel protector. Please see one-line diagram and panelboard schedule to confirm voltages. SPD's minimum surge current capacity shall be **300kA** per phase (L-N plus L-G) and **100kA** per mode (L-N, L-G, L-L and N-G).
 - C. SPD shall contain a technology that utilizes component-level and short circuit current fused metal oxide varistors (MOV) per mode.
 - D. SPD shall be labeled as minimum with Type 2 (verifiable at UL.com). Every component of every mode, including N-G, shall be protected by internal thermal protection. SPDs relying upon external or supplementary installed safety overcurrent protection do not meet the intent of this specification.
 - E. All primary transient paths shall utilize copper wire, aluminum bus bar and lugs of equivalent capacity to provide equal impedance interconnection between phases. No plug-in module or components shall be used in surge carrying paths.
 - F. SPD shall be non-modular design.
 - G. SPD shall provide the following monitoring features: dry contacts, digital surge counter and audible alarm with alarm disable switch.
 - H. Equipment shall utilize a NEMA 12 enclosure.
 - I. If no circuit breaker is available add internal disconnect switch.
- 2.2 DISTRIBUTION PANEL SUPPRESSORS
 - A. Available Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Surge Suppression, Inc
 - 2. LEA International Inc
 - 3. Current Technology

- 4. Liebert
- 5. Advanced Protection Technologies
- B. SPD shall be a multi-stage parallel protector. Please see one-line diagram and panelboard schedule to confirm voltages. SPD's minimum surge current capacity shall be 180kA per phase (L-N plus L-G) and 60kA per mode (L-N, L-G, L-L and N-G).
- C. SPD shall meet all specification requirements in section 2.1 (C through E) and as follows:
- D. SPD shall be non-modular design.
- E. SPD shall provide the following monitoring features: dry contacts, surge counter and audible alarm with alarm disable switch.
- F. SPD shall utilize a NEMA 12 enclosure.
- G. If no circuit breaker is available add internal disconnect switch.

2.3 PANELBOARD SUPPRESSORS

- A. Acceptable Manufacturers:
 - 1. Surge Suppression, Inc
 - 2. LEA International Inc
 - 3. Current Technology
 - 4. Liebert
 - 5. Advanced Protection Technologies
- B. SPD shall be a multi-stage non-parallel protector. Please see one-line diagram and panelboard schedule to confirm voltages. SPD's minimum surge current capacity shall be **120kA** per phase (L-N plus L-G) and **40kA** per mode (L-N, L-G, L-L and N-G).
- C. SPD shall meet all specification requirements in section 2.1 (C through E) and as follows:
- D. SPD shall be non-modular design.
- E. SPD shall provide the following monitoring features: dry contacts and audible alarm.
- F. SPD shall utilize a NEMA 1 enclosure or better.
- G. If no circuit breaker is available add internal disconnect switch.

PART 3 - EXECUTION

3.1 INSTALLATION OF SURGE PROTECTIVE DEVICES

- A. The specified unit shall be installed external to switchboard, distribution and panelboard as stand alone. Internal products will not be accepted.
- B. The specified service entrance/switchboard/switchgear system shall be installed with the shortest lead length possible from the power conductor(s) it is protecting, must have a grounding of 25 Ohms (NEC Article 250.56) or less and shall avoid any unnecessary or sharp bends. Circuit breaker size is to be matched to SPD manufacturer wire size. Minimum circuit breaker size is 30A for connection means. See manufacturer's installation manual.

- C. The specified distribution system shall be installed with the shortest lead length possible from the power conductor(s) it is protecting, must have a grounding of 25 Ohms (NEC Article 250.56) or less and shall avoid any unnecessary or sharp bends. Circuit breaker size is to be matched to SPD manufacturer wire size. Minimum circuit breaker size is 30A for connection means. See manufacturer's installation manual.
- D. The specified branch panelboard system shall be installed with the shortest lead length possible from the power conductor(s) it is protecting, must have a grounding of 25 Ohms (NEC Article 250.56) or less and shall avoid any unnecessary or sharp bends. Circuit breaker size is to be matched to SPD manufacturer wire size. Minimum circuit breaker size is 30A for connection means. See manufacturer's installation manual.

3.2 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- 3.3 FIELD QUALITY CONTROL
 - A. Testing: Contractor shall perform the following field quality-control testing:
 - B. Testing: Perform the following field quality-control testing:
 - 1. After installing surge protective devices, but before electrical circuitry has been energized verify that the unit voltage and connecting equipment voltage is same.
 - 2. Verify per NEC 285.6 that the SPD AIC rating is equal or greater to connecting equipment.
 - 3. Complete startup checks according to manufacturer's written instructions.
 - 4. Perform visual and mechanical inspection of each unit to verify light functionality.

END OF SECTION 26 43 00